NORTH ATLANTIC TREATY ORGANIZATION SCIENCE AND TECHNOLOGY ORGANIZATION

AC/323(HFM-177)TP/552

STO TECHNICAL REPORT

TR-HFM-177

Deployable Laboratory Applications of Nano- and Bio-Technology

(Applications de nanotechnologie et biotechnologie destinées à un laboratoire déployable)

Findings of Task Group HFM-177.

Published October 2014

NORTH ATLANTIC TREATY ORGANIZATION SCIENCE AND TECHNOLOGY ORGANIZATION

AC/323(HFM-177)TP/552

STO TECHNICAL REPORT

TR-HFM-177

Deployable Laboratory Applications of Nano- and Bio-Technology

(Applications de nanotechnologie et biotechnologie destinées à un laboratoire déployable)

Findings of Task Group HFM-177.

The NATO Science and Technology Organization

Science & Technology (S&T) in the NATO context is defined as the selective and rigorous generation and application of state-of-the-art, validated knowledge for defence and security purposes. S&T activities embrace scientific research, technology development, transition, application and field-testing, experimentation and a range of related scientific activities that include systems engineering, operational research and analysis, synthesis, integration and validation of knowledge derived through the scientific method.

In NATO, S&T is addressed using different business models, namely a collaborative business model where NATO provides a forum where NATO Nations and partner Nations elect to use their national resources to define, conduct and promote cooperative research and information exchange, and secondly an in-house delivery business model where S&T activities are conducted in a NATO dedicated executive body, having its own personnel, capabilities and infrastructure.

The mission of the NATO Science & Technology Organization (STO) is to help position the Nations' and NATO's S&T investments as a strategic enabler of the knowledge and technology advantage for the defence and security posture of NATO Nations and partner Nations, by conducting and promoting S&T activities that augment and leverage the capabilities and programmes of the Alliance, of the NATO Nations and the partner Nations, in support of NATO's objectives, and contributing to NATO's ability to enable and influence security and defence related capability development and threat mitigation in NATO Nations and partner Nations, in accordance with NATO policies.

The total spectrum of this collaborative effort is addressed by six Technical Panels who manage a wide range of scientific research activities, a Group specialising in modelling and simulation, plus a Committee dedicated to supporting the information management needs of the organization.

- AVT Applied Vehicle Technology Panel
- HFM Human Factors and Medicine Panel
- IST Information Systems Technology Panel
- NMSG NATO Modelling and Simulation Group
- SAS System Analysis and Studies Panel
- SCI Systems Concepts and Integration Panel
- SET Sensors and Electronics Technology Panel

These Panels and Group are the power-house of the collaborative model and are made up of national representatives as well as recognised world-class scientists, engineers and information specialists. In addition to providing critical technical oversight, they also provide a communication link to military users and other NATO bodies.

The scientific and technological work is carried out by Technical Teams, created under one or more of these eight bodies, for specific research activities which have a defined duration. These research activities can take a variety of forms, including Task Groups, Workshops, Symposia, Specialists' Meetings, Lecture Series and Technical Courses.

The content of this publication has been reproduced directly from material supplied by STO or the authors.

Published October 2014

Copyright © STO/NATO 2014 All Rights Reserved

ISBN 978-92-837-0208-5

Single copies of this publication or of a part of it may be made for individual use only by those organisations or individuals in NATO Nations defined by the limitation notice printed on the front cover. The approval of the STO Information Management Systems Branch is required for more than one copy to be made or an extract included in another publication. Requests to do so should be sent to the address on the back cover.

Table of Contents

		Page
List	of Figures	v
List	vi	
HFN	M-177 Membership List	vii
Exe	ecutive Summary and Synthèse	ES-1
Cha	apter 1 – Framework and Accomplishments	1-1
1.1	Background	1-1
	1.1.1 NATO Needs and Committee Charter	1-1
	1.1.2 Benefits to the Military	1-2
1.2	Objective	1-2
1.3	Meetings	1-5
	1.3.1 Meeting at Edgewood Chemical Biological Center in April 2009	1-5
	1.3.2 Meeting in Munich, Germany in October 2011	1-5
1.4	Survey Development	1-6
1.5	Conclusion	1-11
Cha Bio	apter 2 – Characteristics of the Czech Republic Deployable logical Laboratory	2-1
Cha	apter 3 – The French Transportable Microbiology Laboratory	3-1
3.1	Challenges and Issues	3-1
3.2	Objectives	3-1
3.3	Responses	3-1
	3.3.1 Constitution	3-1
	3.3.2 Deployment	3-3
3.4	Major Equipment	3-3
2.5	3.4.1 Examples of Use	3-3
3.5	Perspectives	3-4
Cha	apter 4 – The Bundeswehr Rapidly Deployable Bio Lab	4-1
Cha	apter 5 – Nano-Medicine and Novel Analytical Approaches	5-1
5.1	Introduction	5-1
5.2	Clinical Nano-Medicine Perspectives	5-1
5.3	Interdisciplinary Frameworks	5-2
5.4	Clinical Nano-Medicine Applications	5-3
	5.4.1 Regenerative Nano-Medicine	5-3

	5.4.2	Diagnosis and Imaging Methods Based on Nano-Medicine	5-3
	5.4.3	Targeting Delivery and Releasing	5-4
Cha CBl	pter 6 RNE La	– Characteristics of the United States Military Deployable aboratory	6-1
6.1	Introd	uction	6-1
6.2	Reme	liation Response	6-2
6.3	Mobil	e Expeditionary Labs	6-3
	6.3.1	Light Mobile Expeditionary Labs	6-4
	6.3.2	Heavy Mobile Expeditionary Labs	6-5
6.4	Chemi	cal Air Monitoring Suites	6-8
Cha	pter 7	- NATO Joint CBRN Defence Battalion	7-1
7.1	NATC	Requirement/Objective for a CBRNE Deployable Laboratory	7-1
7.2	Comb	ined Joint CBRN Defence Task Force	7-2
7.3	NATC	Nations Participating in the Defence Task Force	7-2
7.4	Opera	7-3	
Ann	nex A –	HFM-177 Meeting Itineraries	A-1
A.1	6-8 Ar	oril 2009 Meeting in Edgewood, Maryland, USA	A-1
A.2	29-30	October 2011 Meeting in Munich, Germany	A-3
Ann	iex B –	NATO HFM-177 Deployable Lab Survey	B-1
B.1	Templ	ate	B-1
Ann	nex C –	HFM-177 Meeting Presentations	C-1
C.1	HFM-	177 Meeting: 6-8 April 2009, Edgewood, Maryland, USA	C-1
	C.1.1	Georgia Presentation – by Sergo Tabagari	C-1
	C.1.2	USA Presentation – by Raymond Mastnjak	C-15
C.2	HFM-	177 Meeting: 6-8 October 2011, Munich, Germany	C-17
	C.2.1	The Czech Republic Mobile Lab Presentation – by Libor Pisa	C-17
	C.2.2	Germany Mobile Lab Presentation – by Roman Wölfel	C-27
	C.2.3	United States Lab Construction Presentation – by Raymond Mastnjak	C-43
	C.2.4	United States Sample Triage Presentation – by Raymond Mastnjak	C-47
	C.2.5	Israel Nano-Technology – by Robert S. Marks	C-50
	C.2.6	Turkey Nano-Technology Presentation – by Gürer G. Budak	C-103
	C.2.7	BioMedAC Presentation – by François Thibault	C-123

List of Figures

Figure		Page
Figure 2-1	The Deployable Biological Laboratory Complex Design Scheme	2-1
Figure 2-2	Inside the Deployable Biological Laboratory: Entry Section; Laboratory Section Work Benches; Suited Technicians Working Under Video Surveillance in the Laboratory Section	2-2
Figure 2-3	The Hygienic Section of the Deployable Biological Laboratory	2-3
Figure 2-4	Construction of the Deployable Biological Laboratory: Inflatable Rib Reinforced Tents of the Entering, Laboratory and Hygienic Sections; "Source" Container that Houses the Electric Generator, Fuel Tank and Compressor	2-3
Figure 3-1	The 4 Cases	3-2
Figure 3-2	The Laboratory in Operation	3-2
Figure 3-3	The Laboratory's 5 Step Assembly	3-3
Figure 3-4	Carpiagne – France	3-4
Figure 3-5	Chad	3-4
Figure 3-6	Vietnam	3-4
Figure 4-1	The Deployable Bio Lab, Packed in Robust and Waterproof Transport Boxes	4-2
Figure 4-2	Modern Real-Time PCR Allows Molecular Detection of Different Pathogens Within a Few Hours	4-3
Figure 4-3	Conventional PCR Products are Visualized and Confirmed by Either Hybridization Chip Technology or Lateral Flow Dipstick Assays	4-3
Figure 4-4	A Mobile, Battery-Operated Microscope Allows Microscopically Investigations (e.g., Capsule Staining of <i>Bacillus Anthracis</i> , Malaria Diagnostics) as well as Serological Diagnostics by Immunofluorescence Assays	4-4
Figure 6-1	Overview of CBRN Identification Levels	6-1
Figure 6-2	Pictures of the Mobile Munitions Assessment System: RAMANS Spectrophometer; MMAS Phase 2 System 2; Portable Isotopic Neutron Spectroscopy System; Digital Radiography / Computed Tomography	6-3
Figure 6-3	The Light Laboratory Capability	6-4
Figure 6-4	Inside of the Flyaway Laboratory with a Chemistry and Biology Configuration	6-5
Figure 6-5	The Heavy Laboratory Capability	6-6
Figure 6-6	The Heavy Laboratory Engineering Controls Include Fume Hood, Class II Biosafety Cabinet and Glovebox	6-6
Figure 6-7	The Heavy Laboratory Images Inside the Sample Receipt Tent and 20' ISO Shelter	6-7
Figure 6-8	Light Medium Tactical Vehicle with Shelter and Towed Generator	6-8
Figure 6-9	Internal Laboratory and Storage Configuration of Light Medium Tactical Vehicle	6-9

List of Tables

Table		Page
Table 1-1	Laboratory Capability Surveys	1-7
Table 2-1	Personnel Required for Staffing the Mobile Deployable Laboratory	2-4

HFM-177 Membership List

CHAIR

Dr. John J. SCHLAGER Chief, Molecular Bioeffects Branch 711th Human Performance Wing, Air Force Research Laboratory 2729 R Street, Area B, Building 837 Wright-Patterson AFB, Dayton, OH 45433-5707 UNITED STATES Email: john.schlager@us.af.mil

MEMBERS

Dr. Gürer G. BUDAK Director Gazi University NanoMedicine and Advanced Technologies Research Center Golbasi Bahcelievler District 160 Street P.O. Box 126 06830 Golbasi-Ankara TURKEY Email: Gurer.Budak@gazi.edu.tr

Maj. Jiri DRESLER (Not Appointed) Central Military Health Institute U vojenske nemocnice 1200 169 02 Prague CZECH REPUBLIC Email: Jiri.Dresler@gmail.com

Dr. Julian HOWELLS Group Technical Lead – Reagents Defence Science and Technology Laboratory [Dstl] Porton Down Salisbury, Wiltshire SP4 0JQ UNITED KINGDOM Email: Jlhowells@dstl.gov.uk

Prof. Martin HUBALEK Institute of Molecular Pathology University of Defence Trebesska 1575 500 01 Hradee Kralove CZECH REPUBLIC Email: Martin.Hubalek@sujb.cz Dr. Mark LISANBY Molecular Bioeffects Branch 711th Human Performance Wing Air Force Research Laboratory 2729 R Street, Area B, Building 837 Wright-Patterson AFB Dayton, OH 45433-5707 UNITED STATES Email: Mark.Lisanby@wpafb.af.mil

Maj. Fe LOBO-MENENDEZ Deputy Branch Chief, Molecular Bioeffects Branch 711th Human Performance Wing Air Force Research Laboratory 2729 R Street, Area B, Building 837 Wright-Patterson AFB Dayton, OH 45433-5707 UNITED STATES Email: Fe.Lobo-Menendez@wpafb.af.mil

Dr. Brian J. LUKEY Extramural Research Coordinator 711th Human Performance Wing Air Force Research Laboratory 2729 R Street, Area B, Building 837 Wright-Patterson AFB Dayton, OH 45433-5707 UNITED STATES Email: Brian.Lukey.ctr@wpafb.af.mil

Dr. Ales MACELA Institute of Radiobiology and Molecular Pathology Military Medical Faculty, University of Defence Trebesska 1575 500 01 Hradec Kralove CZECH REPUBLIC Email: amacela@pmfhk.cz

Prof. Robert MARKS Department of Biotechnology Engineering Ben-Gurion University of the Negev POB 653, Beer-Sheva 84105 ISRAEL Email: Rsmarks@bgumail.bgu.ac.il

Dr. Raymond MASTNJAK Supervisor, CBRNE Support (Mobile Labs and Kits), Edgewood Chemical Biological Center APG Edgewood Area, MD 21010 UNITED STATES Email: Raymond.Z.Mastnjak.civ@mail.mil

Pr. Daniel PARZY Directeur, UMR-MD3 GSBDD de Marseille Aubange BP 40026, 111, avenue de la Corse 13568 Marseille Cedex 02 FRANCE Email: D.Parzy@free.fr

Dr. Libor PISA (Not Appointed) Central Military Health Institute U vojenske nemocnice 1200 169 02 Prague CZECH REPUBLIC Email: L.Pisa@email.cz

Dr. Sergo TABAGARI Dean, AIETI Medical School 2/6 Ljubljana Str., Dighomi Tbilisi 0159 GEORGIA Email: Dean@aieti.edu.ge

Pharm. Col. François THIBAULT (Not Appointed) Institut de recherches biomédicales des armes Département de microbiologie BP 87 F-38702 La Tronche Cedex FRANCE Email: Fthibault@crssa.net

Dr. Roman WOELFEL Head, Dept. Med Bio-Recon and Verification Bundeswehr Institute of Microbiology Neuherbergstrasse 11 80937 Munich GERMANY Email: Romanwoelfel@bundeswehr.org

Deployable Laboratory Applications of Nano- and Bio-Technology (STO-TR-HFM-177)

Executive Summary

The expeditionary nature of the North Atlantic Treaty Organization (NATO) Response Force requires deployable laboratory capabilities leveraging advances in nano/bio-technology. As such, the NATO Science Technical Organization Panel on Human Factors and Medicine chartered the research technical group (HFM-177 RTG) to study the "Deployable Laboratory Applications of Nano- and Bio-Technology" with a focus on deployable NATO CBRN laboratory advanced technologies. The goals were:

- 1) To survey deployable laboratory designs, construction and materials;
- 2) Analyze existing instrument technology and procedures;
- 3) Analyze emerging nano/bio-technology for instrument acquisition; and
- 4) Integrate existing and emerging technologies into a deployable laboratory design.

Over 20 representatives from eight countries participated from the Republic of Georgia, Turkey, Israel, the Czech Republic, United Kingdom, United States, France and Germany. Each country discussed their CBRN deployable laboratory capabilities and challenges. The HFM-177 RTG noted the rapidly changing evolution of analytical technologies, the different roles and mission types each country has for its specific laboratory assets, and the varying levels of funds each country allots to maintain/improve laboratory operations. When collected together, these variances provide a diverse set of applications and technologies to address multiple levels of mission requirements, if agreements are placed and leveraged by NATO forces. Consequently, the group decided that a point-in-time survey of the NATO laboratories' capabilities, that would be used to narrow to a best standard set of instrument technologies would not be the appropriate approach. Instead, the RTG recognized the different approaches each country took to develop their deployable laboratory provided greater options for NATO to customize the level of response required. The team decided not to focus on a single NATO laboratory, but instead focus on providing knowledge to HFM on each country's asset strength. The survey found state-of-the-art technical advances employed in current laboratories that allow NATO to best respond with a customized response team based on the threat scenario.

This RTG consisted of highly motivated, exceptionally collaborative, and extremely knowledgeable country representatives that determine great advantages in discussing each other's capabilities and future directions. Topic discussions allowed for a much broader equipment and methodologies evaluation that would have been difficult for a single country to assess in breadth. Many countries' lessons learned were directly applicable to most others deployment laboratory activities. Each country's representatives agreed to continue to have frequent, open communications to address their ever-changing organization's field laboratory needs and emerging equipment usage to facilitate NATO needs.

The HFM-177 RTG effort was a great success. We recommend these results be forwarded to the NATO Army Armaments Group, Joint Capability Group on CBRN Defence, and the Sampling and Identification of Biological, Chemical and Radiological Agents sub-group for further consideration and development.

Applications de nanotechnologie et biotechnologie destinées à un laboratoire déployable

(STO-TR-HFM-177)

Synthèse

La nature expéditionnaire de la force réaction rapide de l'Organisation du Traité de l'Atlantique Nord (OTAN) nécessite des capacités de laboratoire déployable exploitant les progrès des nanotechnologies et biotechnologies. A cet effet, la Commission sur les facteurs humains et la médecine de l'Organisation pour la science et la technologie de l'OTAN a mandaté le groupe de recherche et de technologie (RTG HFM-177) pour étudier les « Applications de nanotechnologie et biotechnologie destinées à un laboratoire déployable » en se concentrant sur les technologies perfectionnées pour un laboratoire NRBC déployable de l'OTAN. Les objectifs étaient les suivants :

- 1) Etudier les modèles, la construction et les matériaux de laboratoire déployable ;
- 2) Analyser les procédures et la technologie des instruments existants ;
- 3) Analyser les nanotechnologies et biotechnologies émergentes pour l'acquisition par les instruments ; et
- 4) Intégrer les technologies existantes et émergentes dans un modèle de laboratoire déployable.

Plus de vingt représentants de huit pays – République de Géorgie, Turquie, Israël, République tchèque, Royaume-Uni, Etats-Unis, France et Allemagne – ont participé au groupe de recherche. Chaque pays a présenté ses capacités de laboratoire NRBC déployable et les problèmes rencontrés. Le RTG HFM-177 a remarqué l'évolution rapide des technologies d'analyse, les différents types de rôles et de mission que chaque pays attribue à ses ressources spécifiques de laboratoire et les niveaux variables de financement alloué pour maintenir ou améliorer l'exploitation des laboratoires. Ces cas constituent un ensemble varié d'applications et de technologies pouvant répondre à de multiples niveaux d'exigence en mission, si des accords sont passés et exploités par les forces de l'OTAN. Par conséquent, le groupe a décidé qu'il n'était pas approprié de mener une étude ponctuelle des capacités de laboratoire OTAN pour déterminer le meilleur jeu standard de technologies instrumentales. A contrario, le RTG a reconnu que les différentes approches adoptées par chaque pays pour développer son laboratoire déployable offraient une plus large palette de possibilités à l'OTAN pour personnaliser le niveau de réponse requis. L'équipe a décidé de ne pas se concentrer sur un seul laboratoire OTAN, mais de s'efforcer d'informer le HFM sur les avantages comparés des solutions adoptées dans chaque pays. L'étude a découvert des avancées techniques, employées dans les laboratoires actuels, qui permettent à l'OTAN de réagir au mieux avec une équipe personnalisée d'intervention à partir d'un scénario de menace déterminé.

Le présent RTG se composait de représentants nationaux fortement motivés, travaillant main dans la main et extrêmement bien renseignés, qui ont décidé qu'il y avait de grands avantages à discuter des capacités et des futures orientations des uns et des autres. Les discussions thématiques ont permis une évaluation bien plus large de l'équipement et des méthodologies que ce qu'un seul pays aurait pu réaliser. Les enseignements de nombreux pays étaient directement applicables à la plupart des activités de déploiement de laboratoire des autres. Chaque représentant national a accepté que des communications fréquentes et ouvertes aient lieu pour répondre à l'évolution permanente des besoins de son organisation en matière de laboratoire sur le terrain et faire part de l'utilisation de l'équipement émergent afin de satisfaire aux besoins de l'OTAN.

Les efforts du RTG HFM-177 ont été couronnés de succès. Nous recommandons que ces résultats soient transmis au groupe armements armée de terre de l'OTAN, pour le groupe traitant de la capacité interarmées sur la défense NRBC ainsi qu'au sous-groupe d'échantillonnage et identification des agents biologiques, chimiques et radiologiques, afin qu'ils soient approfondis et développés.

Chapter 1 – FRAMEWORK AND ACCOMPLISHMENTS

Dr. John J. Schlager Chief, Molecular Bioeffects Branch **Dr. Brian Lukey** Technical Advisor, Molecular Bioeffects Branch

711th Human Performance Wing Air Force Research Laboratory 2729 R Street, Area B, Building 837 Wright-Patterson AFB, Dayton OH 45433-5707 UNITED STATES

john.schlager@us.af.mil

Brian.Lukey.ctr@wpafb.af.mil

1.1 BACKGROUND

1.1.1 NATO Needs and Committee Charter

The NATO Response Force provides a high-tech, flexible, rapidly deployable, interoperable and sustainable force, including land, sea, and air elements, capable of carrying out the full range of Alliance missions. The development of this high-readiness force serves as a catalyst for promoting capabilities improvements and ensuring continued transformation to meet evolving security challenges with greater interoperability for the Alliance military. The NATO Response Force requires a Deployable Laboratory to serve as another key element to create full readiness and ensure mission success of NATO operations and Defence Against Terrorism (DAT).

Consequently the NATO Army Armaments Group (NAAG), Joint Capability Group on CBRN Defence (JCGCBRN), Sub-group on Sampling and Identification of Biological, Chemical, and Radiological Agents (SIBCRA SG) identified the need for a Research Technology Group (RTG) as follows. "This RTG group will define the elements of a field-forward NBC laboratory and its full capabilities to aid in the analysis of samples received by JCGCBRN. The STANAG 4632 establishes the standards of proficiency for NBC deployable Analytical Laboratories (NBC-AL). This NBC-AL will be able to operate across the full spectrum of military land, air, and maritime operations. These operations may range from local security tasks in a relatively benign area to completely cross the operational spectrum for full collective defence. Crisis Response Operations may range from Peace Support Operations to Alliance Combat Operations. The NBC-AL will be capable of deploying as a whole, or in components, with missions tailored to the assessed threat and will be on 5 days' Notice-To-Move (NTM) according to NRF Readiness States."

Further, the Human Factors and Medicine Panel determined that the expeditionary nature of the NATO response force required a deployable laboratory that utilized advanced biotechnology. In 2007, Exploratory Team-066 staffed by responding country experts from the Czech Republic, Spain, Netherlands and the United States meeting in Paris tackled the task of defining specific research and technology areas necessary to develop a deployable laboratory capable of conducting theatre-level, health threat surveillance. The exploratory team identified four topics to address:

- 1) Deployable laboratory design, construction and materials;
- 2) Analysis of existing instrument technologies and procedures;
- 3) Analysis of emerging nano-/bio-technology for instrument acquisition; and
- 4) Integration of existing and emerging technologies into a deployable laboratory product.

The NATO Army Armaments Group, Joint Capability Group on CBRN Defence, and the Sampling and Identification of Biological, Chemical and Radiological Agents sub-group were all suggested recipients of this research and technology effort.

To that end, the NATO Research Technical Organization Panel on Human Factors and Medicine at the spring meeting 2008 chartered the Research Technology Group-177 (HFM-177 RTG) to study the "Deployable Laboratory Applications of Nano- and Bio-technology" with a focus on deployable NATO CBRN laboratory advanced technologies. At that time, the Czech Republic, Georgia, Germany, Hungary, Netherlands, Spain, Sweden, Turkey and the United States were Nations that were invited and/or identified as willing to participate.

1.1.2 Benefits to the Military

The North Atlantic Treaty Organization mission requires that forces be able to execute missions in Chemical, Biological, Radiological or Nuclear (CBRN) warfare environments. Operational success in such inhospitable conditions requires the earliest knowledge of the threat, region of use, active deployment, and if personnel were involved, the timely administration of preventative and curative medical responses in order to maintain the human force and provide enhanced protection of personnel. It is certain that these operational requirements both strategic and tactical combined with the effective use of life-saving measures are best applied using a deployed, dependable environmental surveillance asset with quick, reliable pre-clinical screening. Only this level of asset would provide the agility for the earliest, potentially individually-titrated administration of medical support.

The military force is currently transforming into a more responsive, deployable, agile, versatile, lethal, survivable and sustainable force (Future Force). Medical forces will have to be efficient, effective and capable of supporting the full spectrum of military operations. There exists a significant increase in novel emerging nano-/bio-technology science created coupled to advance technology development that when aligned and captured will create new and revolutionary medical systems. For the medical technology community to exploit these advances in science and technology and achieve significant field-forward gains, the technical and science research communities are required to be engaged in a coordinated effort to apply existing advances for combat support effectiveness en route to the Future Force Warrior. Specifically, prospective NATO medical applications of present nano-/bio-technology include advanced health and fitness monitoring, high-resolution imaging, new environmental sensor platforms, chemical/biological sensors, sensor networks, battle and human-centric data fusion and storage, and soldier therapeutics. Nevertheless, there are others areas where nano-/bio-technology development is needed:

- Sensors: Diagnostic and detection kits (gene-chips, protein-chips, lab-on-chips, etc.);
- Electronics and Computing: Bio-molecular hybrid devices for detection (arrays, biochips), bio-computing (biological models, bio-data treatment);
- **Materials:** Accurate monitoring device (biomarkers), self-decontaminating surfaces, selection of environmental ruggedized/resistant construction materials;
- **Logistic:** Miniaturization of biological devices and systems for lowest footprint (micro-electrical mechanical-based systems, nano-technologies); and
- **Diagnostics:** Novel discovery and use of multi-analyte technologies such as genomics, metabonomics, proteomics-based analysis and specific derived sub-platforms of marker monitors.

1.2 OBJECTIVE

The Exploratory Team-066 establish that the RTG should consider the following menu of topics regarding the detailed design and capabilities of a deployable laboratory, and application of equipment as guidelines for review of emerging nano-/bio-technologies and application to analytical and diagnostic procedures:

- a) Determine the structural features/characteristics of the deployable laboratory capability, define:
 - i) Fixed or mobile deployable unit.
 - ii) Dimensional requirements:
 - 1) Transportable by air; and
 - 2) Adequate space for equipment/work.
 - iii) Delivery by multiple means (air-droppable, tracked, etc.).
 - iv) Minimal logistics/maintenance/supportability requirements.
 - v) Versatile external power capability.
 - vi) Adequate internal power requirements to support all instruments simultaneously.
 - vii) Emergency power capability for escape.
 - viii) Deployable to multiple environments/terrains.
 - ix) Hardened/passive defence.
 - x) External sensor capability for biological, chemical and radiological.
 - xi) Easily decontaminated (both external and internal; rapid internal decontamination capability).
 - xii) Manning/personnel requirements.
 - xiii) Design for threat-based instrument modularity.
 - xiv) Design for technological and tactical upgradeability (ex. Remote detection of biomarkers in soldiers).
 - xv) Automate and remote capabilities (contained and segregated).
 - xvi) Longevity of storage (pre-deployed) and operation in theatre.
 - xvii) BSL-2/3+ Capable.
 - xviii) External sample transfer portals (to containment and/or BSL-3 sections).
 - xix) Secure internal and external communication capabilities (radio, SIPR, telecom).
 - xx) System of internal engineering controls (NBC COLPRO protection (air filtration and air-conditioning Systems): HEPA, active carbon filters, positive/negative pressure, etc.).
 - xxi) Apply applicable ergonomic design.
 - xxii) Assure ability to use in a hot (radiological)/contaminated (BSL-4) zone.
- b) Characterize and identify the deployable laboratory screening technologies:
 - i) Equipment:
 - 1) Optimize existing equipment for type of sample (environmental or clinical), agent (chemical, biological, radiological), and dimensional restrictions;
 - 2) Recommend emerging technologies;
 - 3) Maximize use of ruggedized equipment technologies;
 - 4) Capable of air transport and insertion;
 - 5) Define transport limitations/problems;
 - 6) Maximize automated, self-testing/diagnostic, high through-put and rapid analyses;

- 7) Minimize sample manipulation (whole-sample analytical capability: time save, eliminates contaminated waste generation, eliminates sample loss, promotes safety);
- 8) Minimize use of fluid dependent equipment technologies and perishable consumables;
- 9) Focus on equipment with minimal waste generation or creation of integrated waste management;
- 10) Maximize resizing and application/selection of commercial-off-the-shelf technologies: Max use modular equipment in service;
- 11) Able to be decontaminated; and
- 12) Lowest power draw/supply requirements.
- ii) Personnel:
 - 1) Number minimum needed to man, maximum for highest alert status;
 - 2) Specialty type;
 - 3) Training requirements; key to assure quality of assay completion and full lab functionality in all threat and theatre environments;
 - 4) Physical characteristics of individuals (height, weight, blended in ergonomic design); and
 - 5) Consider completely automated operations.
- iii) Procedures:
 - 1) Recommend use of standardized procedures for sample collection, sample treatment, identification, and decontamination methods for deployable laboratory;
 - 2) Evaluate, develop and validate novel/emerging analytical chemistry, biotechnology/ molecular biology, and nanotechnology integrated procedures;
 - 3) Establish quality control, instrument function, result validation, and laboratory environmental control procedures (may include remote data validation);
 - 4) Maximize use of automated procedures;
 - 5) Alternative procedures (redundancy for procedure and sample assay assurance);
 - 6) Define operation time and consider through-put limitations (the number of the samples per day);
 - 7) Accepted restrictions in lab work, accepted limited sample preparation and identification capability, defined samples types to analyse (air, soil, water, liquid); and
 - 8) Ensure procedures minimize fluid use.
- iv) Data Treatment:
 - 1) Real-time broadcast of data to reach-back expert laboratory;
 - 2) Establish theatre "hardened" archive system;
 - 3) Evaluate commercial-off-the-shelf clinical laboratory software (ex. Specialized Laboratory information software, LIMS);
 - 4) Fully interface instrumentation, where possible, with laboratory information system; and
 - 5) Establish stand-alone bioinformatics databases and procedures to regularly update database.

1.3 MEETINGS

1.3.1 Meeting at Edgewood Chemical Biological Center in April 2009

The HFM-177 RTG team held its inaugural meeting at Edgewood Chemical Biological Center (ECBC) in Edgewood Maryland (USA) in April 2009. Only delegates from Georgia, the Czech Republic and United States attended; the Germany representatives having planned on attending could not make this meeting date. Despite a low number of country representatives in attendance, the meeting was productive for review of both US and the Czech Republic's substantial science and engineering investments and provided a current review of deployable constructs for field laboratories and work environments. Georgia presented their position on biological agents and levied their strong support to work together to the produce deployment response applications and hardware. The meeting was opened by a welcome from Dr. Raymond Mastnjak, ECBC that was followed by a presentation from Dr. John Wade as RTG mentor who presented an RTO overview briefing. The remainder of the meeting was chaired by Dr. Schlager who followed Dr. Wade and provided a HFM-177 RTG positional briefing from the ET-066 data and the mission of the RTG. The delegates developed a professional rapport, toured multiple facilities within ECBC CBRN facilities and observed the design construction of mobile biological response laboratories utilized in the United States.

At this meeting, the delegates identified a major impediment to fulfilling the HFM-177 RTG mission. The main goal of HFM-177 RTG was to evaluate the rapid emergence of bio-and nano-technologies in NATO rapid response laboratories. However, it was quickly realized that there is no single, standard NATO response laboratory that could be used as framework to best evaluate insertion of novel technologies. The first priority objective for the RTG then became to identify the current capabilities of each Nation's laboratory to best suit these missions and determine knowledge and lessons learn to share among the Nations.

1.3.2 Meeting in Munich, Germany in October 2011

The second HFM-177 RTG meeting occurred in October 2011 and was hosted by the Chair with activities well supported by LtCol. Roman Woelfel in Munich, Germany. Seventeen representatives from seven countries met for one and a half days (October 29-30); immediately following the 2011 Medical Biodefence Conference, which had a session focused on deployable laboratory facilities and outbreak investigation teams. Dir. Schlager, the NATO HFM-177 chair, opened the RTG meeting with a review of the general concepts and rational for the RTG. The delegates from each country then gave formal presentations on:

- 1) Deployable laboratory design and construction;
- 2) Existing; or
- 3) Emerging technologies utilized in deployable labs; or
- 4) Product integration.

Raymond Mastnjak (United States, Army ERDEC) and Libor Pisa (Czech Republic, Central Military Health Institute) each delivered talks describing their country's large, transportable, self-contained deployable laboratories presently fielded by their respective organizations. These assets shared common themes, such as compartmentalized, hard-sided container or tent-based construction, as well as the ability to process and identify samples under BSL-3+ conditions. In contrast, Roman Woelfel (Germany, Bundeswehr Institute of Microbiology) and Daniel Parzy (France, Institut de Recherche Biomédicale des Armées) presented their country's rapid deployment responsive, modular, Pelican case-based mobile labs that met commercial airline luggage restrictions, allowing rapid material and human transportability to populated sites. Such lightweight laboratories allow small, highly specialized teams to rapidly deploy and provide environmental and diagnostic analyses to many important world threat areas to include even austere outbreak locations. Key to the effectiveness of this style for these two countries and the approach for all other laboratories is having very well trained technicians that can respond to the need quickly and can perform difficult biotechnical

procedures flawlessly, even in the most difficult environmental conditions. Gurer Budak (Turkey, Gazi University) presented a spectrum of advances in the field of nano-technology with an emphasis on medical applications, while Robert Marks (Israel, Ben Gurion University) presented his research on the development of a hand-held, fiber-optic nano-sensor device for detection applications. The BIOMEDAC Chair, Francois Thibault (France, Institut de Recherche Biomédicale des Armées), also presented his committee's progress. The meeting concluded with a general discussion on:

- 1) Whether the deployable NATO laboratory would be utilized for environmental surveillance following a biological warfare attack or for outbreak diagnosis and mitigation;
- 2) The training and educational requirements of response team members;
- 3) The amount of time necessary for the laboratory to be deployable and useful for response using military or commercial air transport;
- 4) The potential need for large, transportable, self-contained laboratory facilities; and
- 5) The importance of knowing regional capabilities and possessing clearly defined CONOPs prior to NATO asset deployment.

1.4 SURVEY DEVELOPMENT

Based upon detailed discussions at the second meeting in Munich, three key HFM-177 committee members, Drs. Woelfel, Thibault and Mastnjak volunteered to develop a comprehensive, laboratory survey to disseminate not only among the committee members but also to other NATO Nations that could not attend. The survey addressed the specific objectives developed in the charter and other concerns that evolved from the two meetings (see Annex B). To ensure optimal opportunity for our NATO Allies to receive and complete the survey, we sent the survey through two routes; one through the Human Factors in Medicine Panel Executive and second pathway to the committee members' personal contacts in other NATO Nations that did not attend.

The following countries completed the survey:

- The Czech Republic, Central Military Health Institute;
- Germany, Bundeswehr Institute of Microbiology;
- France, Medical Health Services;
- Turkey, Nano-medicine and Advanced Technologies Research Center; and
- Unites States of America, the 20th Support Command, CBRNE.

Table 1-1 lists the summarized finding from the survey. Our Panel pointed out the benefits and disadvantages of a highly mobile verses transportable, fixed-site response laboratory. Briefly, the highly mobile laboratory can deploy and function more rapidly but does not have the more definitive and diverse CBRN tests compared to those within the larger fixed labs. The Panel noted that both have distinct purposes in CBRN rapid response. Because each country has its own defined mission with allies in various world regions and government funding, the range and purposed target for lab deployment assets varies with each country's laboratory functions. Most of all functional needs are based upon the inherent country's capabilities, requirements and interests throughout the world. We believe this diversity and mission variance within alliance countries provides minimally a NATO deployed laboratory approach addressing at least two laboratory designs: one a very rapid expeditionary type lab, and the other, a harden, in-place lab design for longer, more CBRN complex deployment missions. We believe both designs with potential modifications for increased agility should be readily available for NATO leadership to best customize a response team, based on the specific needs from a CBRN threat or incident.

	Czech Republic		Germany	France	Turkey	United States
	Deployable Biological	Mobile Epi- Hygienic				20th SUPCOM (CBRNE)
Permanent Field- Forward Laboratory	Y		Y	N*	Y	Y
Mobile Medical Laboratory	Y	Y	Y			
Responsible for the Technical and Operational Management	Medical Service	Medical Service	Medical Service	Medical Service	CBRN Defence	Medical Service
Laboratory Platform	Deployable 5 ISO 1C Co (L: 6058 W: 2438 x H: 2200	Standard Intainer mm x mm 0 mm)	Deployable: 15 packages (580 x 440 x 330 cm, 30 kg)	0,49 m3-90 kg; 0,49 m3-65 kg; 0,35 m3-78 kg; 0,35 m3-80 kg; 0,22 m3-53 kg (this last package is the compressor cooler); 5	Self-Mobile	Self-Mobile and Deployable: LMT V-Light Lab (LMEL) & MMTV for Heavy Lab (HMEL)
Transportable by	Truck, Airplane (civ/mil) Ship or Cargo Train		Airplane (civ/mil) Ship	Airplane (civ/mil) Ship	Truck or Plane	Truck, Mil Plane, Sealift
Set-Up Time at Site of Operation	72 hi	ſS	2 hrs	1.5 hrs	20 min	LMEL 4 hrs; HMEL 36 hrs
External Supply Requirements	Water, Diesel Oil for Electric Generator Running, Diagnostic and Other Laboratory		Car Battery (Electrical Power Conversion 12V)	Fuel for Generator	Generator and Water	Water and Fuel
Operational Time Without External Resupplies	2 - 3 days		3 days	2 – 3 weeks	3 days	3 days
Scheme for Ensuring Permanent Diagnostic Capabilities (on call or duty team)	Y r		Y		Y	Y
Diagnostic Tests	B-Agents of CDC List, Categories A and B		Suspected B-Agent Outbreaks			Suspected B-Agent Outbreaks
Capable of Serving Laboratory or Hospital Emergencies	Y		N	N	Ν	N

Table 1-1: Laboratory Capability Surveys.

FRAMEWORK AND ACCOMPLISHMENTS

	Czech Republic		Germany	France	Turkey	United States
	Deployable Biological	Mobile Epi- Hygienic				20th SUPCOM (CBRNE)
Intended to Respond to Specific Demands from a Surveillance System	id N Is e		Y			Y
National or Regional Center that Assesses the Emergency and Need for Laboratory Response	Y		Y		Y	Y
Duty Time	On alert <u><</u> 5 incide	days after ent	24/7		24/7	24/7
Network Duty System	NATO C	BRN	Bundeswehr Medical CBRN Task Force		Y	Y
Number of People Involved	12		4	3	3	Needs Dependent
Scientists	Microbiologist Doctor of S	(MD, VMD, ciences	Clinical Microbiologist/ Virologist (MD, PhD)	PhD/MD	1	CWA and BWA Analysis, Infectious Disease / MS, PhD, MD or DVM
	Epidemiolog	gist (MD)	Veterinarian Microbiologist (DVM)			
	Veterinary Epi (VMI	demiologist D)	Molecular Biologist (PhD)			
Technologists	Electrician –	Engineer	Licensed Medical Technicians	Biological Technologist	2	CWA and BWA Analysis / BS, MS or PhD
	Power Ge Operator – I	nerator Engineer				Quality Manager and Laboratory Operations Manager
	Machine Op Engine	oerator – eer				
	Laboratory T	echnician				
Biological Agent P: PC Testing		CR; S: Serological	; M: Microscopy;	C: Culture		
Abrin			P,S			
Aflatoxins			P,S,M			
B. pseudomallei		С	Р	Р		P,C
Bacillus anthracis	S,M,C	P,S,M,C	P,S,M	Р	С	P,S,C
Botulinum Toxine	S	P,S	P,S	S		P,S

	Czech Re	public	Germany	France	Turkey	United States
	Deployable Biological	Mobile Epi- Hygienic				20th SUPCOM (CBRNE)
Brucella spp.	S	P,S	P,S			P,S,C
Burkholderia mallei	С	С	Р	Р		P,C
CCHF virus			P,S			Р
Chikungunya virus			Р	S		Р
Clostridium perfringens toxin						
Coxiella burnetii	S	С	Р			P,S
Eastern-Equine- Encephalitis virus			Р			P,S
Ebola virus			Р			Р
Escherichia coli	S,M,C	S,M,C	Р		С	
Flaviviruses			P,S			Р
Francisella tularensis	S	P,S	P,S	Р		P,S,C
Hantaviruses	S	S	P,S			Р
Influenza virus	S	S	P,S			Р
Junin virus			Р			
Lassa virus			Р			Р
Machupo virus			Р			Р
Marburg virus			Р			Р
Monkeypox virus			P,S	Р		Р
Omsk virus						Р
Orientia tsutsugamushi						
Palytoxin						
Ricin		P,S	P,S	S		P,S
Rickettsia rickettsii		S	P,S			
Rickettsia typhi		S	P,S			
Rift Valley fever virus						Р
Salmonella spp.	S,M,C	P,S,M,C		С	С	
Salmonella Typhi	S,M,C	S,M,C		С	С	
Saxitoxins						
Shigella dysenteriae	S,M,C	S,M,C	Р	С	С	
Staphylococcal enterotoxins	S,M,C	S,M,C	P,S	С		P,S
Tetradotoxin						

	Czech Re	public	Germany	France	Turkey	United States
	Deployable Biological	Mobile Epi- Hygienic				20th SUPCOM (CBRNE)
Tick-Borne Encephalitis (TBE) virus	S	S	P,S			Ρ
Trichothecene			P,S			
Variola virus		P,S	P,S	Р		P,S
Venezuelan-Equine- Encephalitis virus			Р			P,S
Vibrio cholerae	S,M,C	S,M,C	P,S	С	С	
Western-Equine- Encephalitis virus			Р			P,S
Yellow fever virus			Р	Р		
Yersinia pestis		P,S,M,C	P,S,M			P,S,C
Others: Dengue fever virus		S	P,S			
Others: Toxoplaxma gondii		S				
Chemical Warfare Agent	t N	N	GA, GB, GD, VX, HD, Phosgene	Ν	N	GA, GB, GD, GF, VX, HD, L, RVX, HN-1, HN-2, HN-3
Nuclear/Radiological Agent	Ν	N	SVG II Radiation Detector	Ν	Ν	Alpha, Beta and Gamma
* France collaborates with Armaments Procurement Agency (DGA) for prototype. This laboratory is in the prototype stage and has been validated for parasitological, microbial and viral pathologies. This laboratory is in course of acquisition by the Armaments Procurement Agency (DGA) for the Medical Service.						

The Panel also discussed the best equipment to recommend for a NATO laboratory. After long discussions about the technology rapidly changing, the different roles that each country has for its specific laboratory and the varying funds allotted to each laboratory, we concluded that a point-in-time list of specific instruments to suggest a 'standardize' NATO laboratory (or -ies) would not be the best approach for this effort. Instead, providing a forum for frequent, open communications among the NATO laboratories about lessons learned would be best to facilitate a potential deployment and response. This approach allows an active scientific and technical address of key elements needed for the current threat combined with the ever-changing individual government organization needs, their available equipment and current country of each their laboratories. Consequently, the Chair requested that each laboratory briefly describe their laboratories in a chapter in this report as a starting point for review by the HFM Panel.

Also invited from the 2011 Medical Biodefense Conference and able to attend our meeting was Dr. Frederick Johnson from the NATO Army Armaments Group, Joint Capability Group on CBRN Defence, Sub-Group on Sampling and identification of Biological, Chemical and Radiological Agents (SIBCRA)

who participated as a SIBCRA representative. Dr. Johnson described the function/mission of his team so that we could best develop the knowledge generated from our HFM-177 RTG meetings and this report to transition to his group.

From the mission of SIBCRA, the mission is two-fold: "... to determine criteria that must be met in order to provide unequivocal proof of the first use of Biological, Chemical, and Radiological Agents to NATO political and military authorities and thus to support timely decisions concerning NATO response" and "to provide the operational commander with real time information that will lead to immediate decisions on protection that will save lives and prevent casualties".

The SIBCRA team has drafted a handbook that identifies the procedures necessary to provide NATO Command Authorities with the evidence needed for international prosecution and to maximise troop safety in cases of (suspect) B, C, or R agent exposure. Aspects of the forensic capability can also be of potential use to operational business, while these are not seen as primary tasks for SIBCRA. Potential use to operational business concerns:

- Non-forensic sampling and laboratory analysis;
- The positioning, operating posture, exposure management, tempo and manoeuvre ability of units throughout the operational spectrum;
- Support to medical services for providing the most appropriate health care to casualties and for determining the most appropriate protective actions for implementing force health protection; and
- Site decontamination and eventual remediation.

The Chair of the HFM-177 RTG sent a representative, Capt. Mark Lisanby (USAF) to present a general overview of the group's work and efforts, brief the team's progress and participate in SIBCRA's meeting on 22 May 2012 in Sweden. This NATO sub-group is working under the aegis of STANAG 4632 Deployable NBC Analytical Laboratory. This group was not aware of the HFM-177 RTG activity but appears to be the perfect recipient of this work to carry these efforts forward.

1.5 CONCLUSION

Overall, the HFM-177 collaborative effort was a great success. Over 20 representatives from eight countries participated (Czech Republic, France, Georgia, Germany, Netherlands, Turkey, United Kingdom and United States) over the term of the HFM directed work from Exploratory Team through the two activities involving the Research Technical Group. Each country discussed their laboratory's capabilities and challenges. The group clearly recognized that each deployable laboratory's personnel and equipment varies substantially, based upon the country's capabilities and mission. The group discussed varying scenarios of CBRN exposure and response and the pros and cons of different laboratory capabilities, while virtually all deep discussions remained within the Biological Warfare Agent threat area. The different approaches each country took to develop a deployable laboratory have actually provided greater options for NATO to address different mission and threat situations. The team decided not to provide a standard, forcing an organizational structure and equipment list but instead suggests that each country continue to focus on improving their laboratory mission strength. Each country agreed that they intend to follow state-of-the-art advancements in current technology that best support their laboratories and consequently allow NATO to consider the best respond with a customized team based upon the scenario.

Fruitful discussions focused on strategic, operational and tactical issues including:

1) The deployable NATO lab's mission after a BW attack – environmental surveillance or outbreak diagnosis and mitigation;

- 2) The training and educational requirements of response team members;
- 3) The deployment response time using military or commercial air transport;
- 4) The requirements for large, transportable, self-contained laboratory facilities;
- 5) The importance of knowing in country or regional capabilities; and
- 6) The need to clearly defined CONOPs prior to NATO asset deployment.

The team found great advantages in discussing each other's capabilities and future directions. The meeting approach allowed a much broader evaluation of equipment and methodologies that would be far too labor-intensive for any one country to tackle alone. Also many of the countries' lessons learned were directly applicable to the entire team. The team agreed to provide platforms for more frequent and open communications among the active deployment-ready laboratories to best facilitate the every-changing organization, equipment and mission of each country's laboratory, with focused discussions on lessons learned.

This group of representatives were highly motivated, exceptionally collaborative and extremely knowledgeable. We encourage NATO to support future collaborative efforts to best share advancements in technologies among the groups and international improvements in techniques, tactics and procedures. We also recommend that NATO Army Armaments Group, Joint Capability Group on CBRN Defence, and the Sampling and Identification of Biological, Chemical and Radiological Agents sub-group, working under the aegis of STANAG 4632 Deployable NBC Analytical Laboratory, carry these efforts forward. We suggest the HFM Panel consider creating a forum for periodic meetings (yearly) with these groups involving science/technology experts (medical clinician and researcher) to discuss tactical issues that can provide knowledge of the human factors and medicine for the NATO portfolio. Lastly, the areas of chemical (e.g., nerve, vesicant, nanomaterial), nuclear, or radiological (e.g., chemical emitter and its energy) warfare were not deeply reviewed by or found key to the participating country's response with regards to their lab assets. For future considerations by the HFM Panel and NATO regarding laboratory deployments, adding sensing/detection capabilities combined with BWA sensing and well trained personnel in a deployable lab asset would be critical for providing the fully functioning theatre laboratory that could respond accurately and swiftly to these types of insidious threats.

Chapter 2 – CHARACTERISTICS OF THE CZECH REPUBLIC DEPLOYABLE BIOLOGICAL LABORATORY

Prof. Martin Hubalek

Institute of Molecular Pathology Faculty of Military Health Sciences University of Defence Trebesska 1575 500 01 Hradee Kralove CZECH REPUBLIC

Martin.Hubalek@sujb.cz

The Deployable Biological Laboratory (DBL) is intended for the rapid and unambiguous identification of biological warfare agents, such as pathogens registered on the United States Centers for Disease Control's category A and B select agent list, in particular. The facility is technically designed for a wide climatic range, so that it can be utilized anywhere in the world. However, it is dependent on external logistical support and therefore can only be deployed as a component of a larger operational whole. The aim of the laboratory, including selected technology, is to achieve the highest degree of protection of personnel and the environment when handling high-risk biological material in field conditions.

The layout of the facility is designed as a complex of four working sections that are connected in a unidirectional operational stream. In practice, this means that the first entry section is intended to receive samples and the preparation of laboratory personnel. The entry section also performs the function of a command and control unit. All terminals are located here. Data is collected and evaluated here. There is also a communication node located there. The core of the complex is a laboratory section. This is where laboratory tests and identification of biological agents are carried out. This space features laboratory equipment, camera system, a waste water sterilization unit and decontamination loop. Outputs are placed for air supply, allowing four people to work in pressurized protective suits. The laboratory section operates under negative pressure and airflow through the system, exhausts through HEPA and NBC filters. The air in the air conditioning unit circulates in a closed circuit.

Figure 2-1: The Deployable Biological Laboratory Complex Design Scheme.

CHARACTERISTICS OF THE CZECH REPUBLIC DEPLOYABLE BIOLOGICAL LABORATORY

(c)

Figure 2-2: Inside the Deployable Biological Laboratory: (a) Entry Section; (b and d) Laboratory Section Work Benches; (c) Suited Technicians Working Under Video Surveillance in the Laboratory Section.

Laboratory technique allows a combination of different laboratory methods with a goal to confirm and unambiguously identify the originator. Biological agents can be identified by serological methods, by real-time PCR methods, using cultivation and subsequent microscopic and biochemical tests.

Decontamination of the laboratory section is accomplished by a combination of germicidal action of sources and application of disinfectants. The following section serves as a hygienic room where laboratory workers remove their protective suits. It is equipped with inflatable shower to perform personal hygiene.

Figure 2-3: The Hygienic Section of the Deployable Biological Laboratory.

The last part of the DBL is the output section. It is intended for storage of diagnostic and laboratory consumable materials. Its technical equipment allows us to store samples for examination, sub-samples for arbitrage or confirmatory and forensic tests in reference institutions for selected infectious pathogens.

The first three sections are designed as spacious tents with a special insert that forms the interior and also adjoining rooms that connect with lockable through-tunnels. The last section is placed in the container. The tents are reinforced with inflatable ribs. The insert is suspended on an aluminium frame. The floor is resistant to mechanical stress and composed of a segment system that allows for quick assembly.

(a)

(b)

Figure 2-4: Construction of the Deployable Biological Laboratory: (a) Inflatable Rib Reinforced Tents of the Entering, Laboratory and Hygienic Sections; (b) "Source" Container that Houses the Electric Generator, Fuel Tank and Compressor.

During full operation, pressure modes are set so that the entry and hygiene sections are protected by controlled positive pressure, whereas the laboratory section is maintained under negative pressure. The heart of the facility is an energy container with a power generator unit that is equipped with a diesel motor. A compressor station provides production and storage of compressed air for the laboratory section. Although the energy unit is fully automated, it requires supervision by an engineer for each working shift. Another technician must be present to supervise the activities of air and water management. A specialist in the field of electrical devices and power distribution is essential to the operation of the DBL.

The Deployable Biological Laboratory has a 12-member staff: the Commander; 4 specialists in hygiene, microbiology, epidemiology or veterinary epidemiology; 3 laboratory technicians and 4 engineers. Designation of special laboratory equipment to field conditions requires that each staff member be completely independent and sufficiently competent in their field and at the same time be able to work as a team, especially in the construction of the complex, in full operation, in dealing with accidents or maintenance and care of some larger technological units. Construction of the complete facility can be completed within 72 hours, at which point the laboratory can be brought into a state of alert and initiate action. The deployable biological laboratory is stored in 5 standard ISO-type containers. This packaging format allows for a wide range of transportation means.

	Post	Number
1.	Commander	1
2.	Medical/biological experts (microbiologist, epidemiologist, veterinarian, doctor of natural sciences)	4
3.	Laboratory technician	3
4.	Engineer	4
	Total	12

Fable 2-1: Personnel Required fo	r Staffing the Mobile	Deployable Laboratory
----------------------------------	-----------------------	-----------------------

Chapter 3 – THE FRENCH TRANSPORTABLE MICROBIOLOGY LABORATORY

Pr. Daniel Parzy

Directeur, UMR-MD3 IRBA, Antenne Marseille GSBDD de Marseille Aubagne B.P. 40026, 111, Avenue de la Corse 13568 Marseille Cedex 02 FRANCE (33) 4 91 15 01 14

d.parzy@free.fr

Pharm. Col. Francois Thibault

Institute de recherches biomédicales des armées Centre de recherches du service de santé des armées Département de microbiologie B.P. 87 F-38702 La Tronche Cedex FRANCE (33) 4 76 63 6

fthibault@crssa.net

3.1 CHALLENGES AND ISSUES

Our troops deployed in tropical area are exposed to major health risks likely to reduce their operational capacity. Facing the risks of natural disasters and terrorism, France has the means specific usually entrusted to civil security, but does not have all the capabilities to deploy the biological means of investigation. The Direction of the health service of the armed forces intends to strengthen its expertise on the infectious risks, in particular in the context of emerging disease, and to develop its operational research in more close proximity to the forces. This is the reason for which the military component of biological and epidemiological investigation (EMIBE) has been created. This structure should include a laboratory of microbiology developed from the experiences in field campaigns of the research teams, the concept must offer a rapid deployment regardless of the place of investigation. In the difference of laboratory shelters, it should also reduce the duration and the cost of missions. The goal is to get a quick diagnosis for a fast and appropriate response.

3.2 OBJECTIVES

The objective of this project was to develop a transportable, autonomous field laboratory that is quickly deployable in degraded environments. It must integrate elements for microbiological techniques, but its modular design should allow its adjustment to all situations and evolve with technological progress.

3.3 RESPONSES

The system is actually composed of four suitcases that are small enough and light enough to transport by car, truck, or civilian or military airplane (complies with the IATA standards). To meet the cold requirements a cooler is added to the equipment. It provides reliable service in severe-duty environments, with low maintenance.

Its design allows deployment in a short period of time (< 30 minutes) without tools. The layout of the different elements offers good ergonomics for optimal work. All the procedures and embedded software allow quality control found in the reference laboratories. Self-sufficiency in energy is provided by a generator (fuel tank capacity 4,2 L, approximately 13H00).

3.3.1 Constitution

• 4 composite carbon fiber cases (0,49 m³-90 kg; 0,49 m³-65 kg; 0,35 m³-78 kg; 0,35 m³-80 kg) [see Figure 3-1].

- 1 compressor cooler (- 20° C and + 4° C; 0,22 m³-53 kg).
- Total weight and volume: 366 kg, 1,9 m³.

NB: The weight of different cases is variable depending on the supplies provided for the mission.

Figure 3-1: The 4 Cases.

Figure 3-2: The Laboratory in Operation.

3.3.2 Deployment

Figure 3-3: The Laboratory's 5 Step Assembly.

3.4 MAJOR EQUIPMENT

- Laminar flux hood that ensure the protection of the biologist and samples (with a self-test security).
- Microbiology trigaz incubator with a maintenance of set-point temperature whatever the outside temperature (control of CO₂ and O₂ level by using CO₂ and N₂ compressed bottle, storage of data culture conditions).
- Micro-plaque absorbance reader and micro-plaque washer. .
- Mini real-time PCR apparatus. •
- Centrifuge.
- Microscope.
- Electrical board with UPS top line.
- Generator 1 kw.

The consumables and reagents are chosen according to the objectives of the mission.

3.4.1 **Examples of Use**

This laboratory has already been used in various field studies and is the subject of continuous improvement.

٠ Carpiagne – France

> Climate: Mediterranean / Transport: Road / Energy: Portable Generator / Analyses: Bacteriology, Virology, Parasitology

THE FRENCH TRANSPORTABLE MICROBIOLOGY LABORATORY

Figure 3-4: Carpiagne – France.

• N-Djamena/Abeche – Chad

Climate: Semi-arid / Transport: Civil and Military Airway / Energy: Portable Generator / Analyses: Bacteriology, Virology

Figure 3-5: Chad.

• Bom-Bô – Vietnam / Kinshasa – DRC

Climate: Tropical wet / Transport: Civilian Airway and Road / Energy: Sector 110/230W-Portable Generator / Analyses: Parasitology

Figure 3-6: Vietnam.

3.5 PERSPECTIVES

- Energy autonomy: Development of a hybrid power source integrating both a fuel cell and photovoltaic panels.
- Development of bioassays based on the luminescence technology and automated pipetted bioluminescent plate reader.
- Development of new module with integration of haematology and biochemistry devices.

Chapter 4 – THE BUNDESWEHR RAPIDLY DEPLOYABLE BIO LAB

LtCol. Dr. Roman Wölfel Head, Dept. Med Bio-Recon. and Verification Bundeswehr Institute of Microbiology Neuherbergstrasse 11, 80937 Munich GERMANY

romanwoelfel@bundeswehr.org

Rapid and reliable identification of biological agents and other dangerous pathogens is one of the major tasks of the Department for Medical Bio-Reconnaissance and Verification at the Bundeswehr Institute of Microbiology in Munich. To fulfill this task outside of Germany a modular, rapidly deployable, microbiological laboratory was developed for field operations.

Because modern microbiological methods place high demands on the infrastructure of a lab – particularly when employed for medical or bioforensic purposes – a core capability of the rapidly deployable bio lab consists in utilizing very basic facilities for modern diagnostic investigations. By virtue of the system's modular design it is possible to bring only the equipment needed to fulfill a specific mission.

All equipment in the deployable bio lab is packed in waterproof rollable boxes. It is deployable within 72 hours in an aircraft as passenger luggage and depending on local conditions, it is operational six to twelve hours after arrival in the area of operation. The typical space requirement for the lab is approximately 20 square meters. Using different materials, several separate working areas can be created in the deployed environment. For transportation and storage of laboratory reagents and clinical samples both active and passive freezers are available. To increase safety of lab personnel, preparation of unknown biological samples can be conducted in a mobile glove box up to prevent exposure to potential pathogens.

The modular design of the deployable lab allows a mission specific tailoring of equipment and personnel to meet the needs on-site. Key features of the rapidly deployable bio lab are:

• Modular laboratory equipment:

- 8 15 milspec boxes;
- Weight per box: max. 31 kg;
- Cleared as passenger baggage in commercial aircrafts; and
- Waterproof packaging.
- Main focus:
 - Real-time PCR techniques; and
 - Conventional PCR as backup method.
- In addition:
 - (Immunofluorescence-) microscopy;
 - ELISA and immunochromatography;
 - Transport and set-up by lab personnel; and
 - Operational under resource-limited conditions.

THE BUNDESWEHR RAPIDLY DEPLOYABLE BIO LAB

The deployable bio lab allows the identification of bacteria, viruses, certain toxins and parasites with the aid of conventional and real-time PCR, immunological tests (ELISA and immunochromatography), as well as light and immunofluorescence microscopy. The laboratory mission, as well as all methods and documentation techniques, adhere to NATO requirements regarding rapid outbreak investigations (RDOIT) and handling and confirmed identification of biological warfare agents (SIBCRA).

At present the diagnostic spectrum of the lab covers more than twenty-eight diseases, among them anthrax, plague, tularemia, Q-fever, brucellosis, Crimean-Congo-Haemorrhagic-Fever, Ebola fever, smallpox, influenza and malaria.

The operation capacity of the lab is limited by the amount of consumables and by the number of personnel. In total approximately 50 tests can be run, with up to three different tests with 14 samples each per day. Both conventional and real-time PCR investigations can be conducted in the deployable bio lab abroad. For the confirmation of conventional PCR products DNA hybridization assays are used in the field.

By addition of modular packed supplementary equipment, it is possible to further extend both the diagnostic spectrum of the lab and also its duration of operation. This increased spectrum of application may include diagnostic methods (e.g., basic blood chemistry), additional lab equipment, and more personnel abroad to allow shift work. All necessary equipment is packed on aircraft pallets and can be deployed within a few days as air freight.

Figure 4-1: The Deployable Bio Lab, Packed in Robust and Waterproof Transport Boxes.

Figure 4-2: Modern Real-Time PCR Allows Molecular Detection of Different Pathogens Within a Few Hours.

Figure 4-3: Conventional PCR Products are Visualized and Confirmed by Either Hybridization Chip Technology (Left) or Lateral Flow Dipstick Assays (Right).

Figure 4-4: A Mobile, Battery-Operated Microscope Allows Microscopically Investigations (e.g., Capsule Staining of *Bacillus Anthracis*, Malaria Diagnostics) as well as Serological Diagnostics by Immunofluorescence Assays.

Chapter 5 – NANO-MEDICINE AND NOVEL ANALYTICAL APPROACHES

Dr. Gürer G. Budak (MD, PhD, EMBA)

Director, Nanomedicine and Advanced Technology Research Center, Ankara-Turkey Member, European Technology Platform on Nanomedicine President, International Society for Nanomedical Science +90 312 485 1519 TURKEY

drgurerbudak@yahoo.com

5.1 INTRODUCTION

Developments in nano-technology have revealed that macroscopic and nano-metric forms of organic structures possess different features in physical, chemical and biological aspects. By proving that nano-devices, which are produced at laboratory, can interact with biomolecules, both physiological processes in healthy tissues and patho-physiologic basis of diseases begin to be understood.

"Nano-medicine," which appeared as a new scientific interest parallel to the above-mentioned developments in nano-technology, became one of the most studied topics in the world by the reason of the fact that it leads conceptual changes in accepted and applicated medical methods up to now and presents different diagnosistreatment alternatives.

Although nano-technology is a commonly studied field all around the world, there is still no clear consensus about what nano-scale really is. One nano-meter is calculated as one billionth (10-9). It is possible to fit 5 carbon atoms in this scale as in three dimensional forms. According to BSI (PAS 71) applications, less than 100 nm or even smaller scales are evaluated within the concept of nano-technology. While at the beginning of 2000 s, studies less than 200 nm and in smaller scale were considered as nano-medicine, today this range is accepted between 5 - 100 nm.

5.2 CLINICAL NANO-MEDICINE PERSPECTIVES

Currently the goal is to approach patients with diseases and diagnose and start treatment, when pathologic change is only at single-cell level. However, this is only possible by increasing the efficiency of *in-vivo* and *in-vitro* diagnosis methods. Although nano-medicine is a field presenting great opportunities in this regard, it also brings along disadvantages because it is a new, developing discipline.

In the literature, there is a wide range of research topics: everything from the discovery of new nanobiomaterials to using these materials in clinics. While searching for physical, chemical and biological applications for nano-materials it is also attempted to be understood how to use these materials on living creatures. Research want to know what adverse effects might be caused by the use of these materials specifically, effects of nano-materials on human health and environmental health. In addition, possible social and legal problems have been discussed and new ethical rules have been introduced.

Some studies are detailed, more specific and more focused on developing safer diagnostic devices. There are studies investigating different biological measuring methods with one integrated device. By using biosensors which are developed with the use of nano-electronic circuits, researchers would be able to establish micro mobile laboratories which could easily be used by patients and, if necessary, could transmit data to an external user.

Another related area of nano research studies the combination of *in vitro* monitoring techniques and *in vivo* nano-medical devices. In those studies, researchers are attempting to develop nano-structures which are able to carry specific contrast substances which will be directed from the outside. Thus, it will be possible to take detailed molecular images of target tissues.

In another study, it was researched how to combine nano-structures with pharmacological agents. Nano-structures which carry therapeutic and diagnostic agents at the same time, would be especially ground-breaking in cancer cases making it possible to administer a treatment directly on target. This cancer treatment, known as theragnostic (therapy + diagnose), is aimed to improve efficiency of cancer treatment by taking images of the target tissue at different times.

Lastly, intense studies have been conducted on the successful regeneration of diseased or injured tissues by means of nano-grafts and reproducing needed artificial organs by means of nano-scaffolds in *in vitro* conditions and then replacing diseased or injured organs with the artificial ones.

Methods which have been developed by using nanotechnology have the potential to be effective on all medical equipment. For example, developing new materials to be used in surgical implants. Nano-metric systems or minimal invasive sensors, which can be used in monitoring metabolic activities, can be considered within this regard. Nano-pumps, injectable/implantable polymer systems, liposomal drug applications and cell/gene therapy methods, can be considered for controlled drug delivery systems. Currently, half of the improvements related to new molecules all around the world are made by biotechnology companies. Therefore, over 4000 companies in the world work in an area related to drug delivery systems, tumor targeted therapy methods, or drug carrying implants.

5.3 INTERDISCIPLINARY FRAMEWORKS

All those efforts for understanding the development of disease at the molecular level and for treatment are very important to spread all the developments in nano-medicine to the society. Since the topic has a wide scale, different disciplines have to work together in the nano-medicine area. It can be said that for now, neither any scientific field nor areas of expertise possesses the capacity of scientific and technical infrastructure to conduct such a research by itself. To manage scientific research in such a field, it is a must to establish a well-organized 'team'. Within such a team, conventional disciplines such as basic-clinic medical scientists, pharmacologists, physics-chemistry-electric-electronic-biomedical-computer engineers, etc., and new fields such as genome-proteome science, pharmacokinetic modeling and microscope designing, etc., should be included.

In addition to self-disciplinary nature of nano-medicine, the more the numbers of studies increase in this field the better new sub-disciplines appear. Some of these sub-disciplines are mentioned below and many studies have been conducted on each specific topic:

- Imaging: molecular, vascular, neurological, etc.;
- In vitro diagnosis;
- *In vivo* diagnosis and biosensors;
- Advanced biomedical materials, including "smart" and functionalized materials and surfaces;
- Regenerative medicine and tissue engineering;
- Infection control;
- Drug design and targeted drug delivery;
- Gene and cell therapy;
- Man-machine interfaces;

- Nano-toxicology;
- Nano-medicine and risk management; and
- Nano-medicine and ethics.

5.4 CLINICAL NANO-MEDICINE APPLICATIONS

Today, big scaled centers which conduct experimental and clinical studies are focused mainly on three fields.

5.4.1 Regenerative Nano-Medicine

Current 'traditional treatment' approaches seem to have limited results in many diseases or cause success of training to change from patient to patient. Both for improving the efficiency of the treatment and minimizing the side effects, methods to be used should be patient-specific characteristics.

As a result of "tissue engineering" studies, the basis of patient-specific treatments, which can be used in the regeneration and reparation of *in situ* tissues, has started.

Main implementation fields of tissue engineering, which is an interdisciplinary field, are maintaining, improving and repairing the functions of biological structures through collaboration of engineering and life sciences. By means of tissue engineering, future therapy methods will be more focused on treatment of chronic disorders by use of self-healing mechanisms of the body than targeting symptoms or reducing the development of diseases.

It is possible to evaluate regenerative nano-medicine studies into two topics as therapy and biomimesis.

5.4.2 Diagnosis and Imaging Methods Based on Nano-Medicine

The most important aim in the diagnosis of diseases is to diagnose disease when it is at the earliest stage, at one-cell level. To reach this aim, we must develop new *in vivo* and *in vitro* diagnosis methods based on nanotechnology. Within the scope of *in vitro* applications, studies on chemo-bio nano-sensors, ultra-sensitive biochips ("lab-on-a-chip" and "cells-on-chips" devices) have been prepared for routine medical applications.

Yet-to-be-produced nano-analyser devices will be used by patients and, at the same time, will transmit multiple types of data to clinicians. More important than that, by means of nano-biosensors, it will be possible to increase the accuracy of already used test methods. Biosensors (such as photonic crystal nano-biosensors, magneto nano-immunosensor, piezoelectric nano-sensors, resonating beam sensors, and ion-channel biosensors) harness the immensely powerful molecular recognition properties of living systems and engineer these into electronic devices to provide easy-to-use sensing devices. The most successful biosensor developed to date, is the home blood glucose sensor which is now ubiquitous world-wide. Biosensors can be used to measure disease markers, food safety, and environmental quality, to ensure safety and security.

Developments in microscopic scanning-imaging methods (quantitative-PET, MRS, d-MRI, and f-MRI), spectroscopic-spectrometric techniques (Fourier Transforms Infrared Imaging Spectroscopy – FTIR, High Performance Liquid Chromatography – HPLC-MS / HPLC-UV-Vis, and Matrix-Assisted Laser Desorption/ Ionization Mass Spectrometry-MALDI-TOF) and advanced genetic analyses (Real-Time Polymerase Chain Reaction – PCR) provide ultra-high spatial resolutions and give detailed molecular information about the complex 'functionality' of cells. Data acquired by use of quantum dots and fluorescent nanoparticles will lead developments of more innovative and stronger *in vivo* diagnosis devices. Nano-devices produced as accompanying this functional molecular imaging will be more effective and much safer.

5.4.3 Targeting Delivery and Releasing

Long-term aims of controlled drug delivery systems are to develop diagnosis agents with a high level of efficiency and safety, and to perform treatment, application and follow up with the same nano-system. 'Find, fight and follow', as is the concept; includes early diagnosis, treatment and monitoring of the results and also is stated as "theragnostic" (diagnosis + treatment).

Drug delivery techniques suitable for theragnostic definition are prepared in accordance with two needs. First is drugs targeting more effectively where the disease is located, with high patient tolerance and cost effectiveness, the other is to detect new methods for distribution of new types of pharmacologic agents which cannot be distributed effectively by conventional methods.

The main aim of pharmaceutical studies in this regard is to target medication to specific target tissues, at the right time, in the necessary amounts and with safe, repeatable, and controllable methods. Currently, 13% of products on the pharmaceutics market are related to controlled drug distribution systems. Nano-particle formulations are still used to increase activity without increasing surface/volume proportion. In addition, nano-particles act as drug carriers to effectively transmit therapeutics which have weak liquidity. If a therapeutic active substance is suitably encapsulated in a nano-particle, carrying this drug anywhere requested, controlled oscillation of the drug and protection from early stage activity decreases can be managed. These results will both increase the efficiency of drugs and decrease side effects dramatically. These types of nano-particle delivery systems can be used for the treatment of cancer and many other diseases.

Controlled drug delivery is based on the principle of turning pathophysiological changes, which appear basically in diseased tissue, into advantages for treatment. Because in tissues in which pathological process has already started, all physiological functionality disorders related to cell homeostasis are observed, accumulation of carriers which distribute drugs in a controlled manner will be easier. Anatomic barrier between normal and pathologic tissues and vascularisation differences will make it easier to deliver nano-carriers to diseased tissue. Thus, nano-carriers which carry therapeutic agents will reach much higher concentration in target tissue compared to doses applied with normal drug treatment.

As a result of decrease in vascular permeability and lymphatic drainage appeared especially in tissue which developed tumor and inflammatory diseases, on one hand reach of nano-structures to target tissue will be facilitated, on the other hand it will be more difficult to withdraw. By means of the opportunity created by this pathophysiological change, nano-structures can easily be accumulated in extravasations and target tissue.

By means of localization tendency of nano-carrying systems especially in RES will be considered as a huge advantage in terms of both controlled and passive distribution of drugs. This natural distribution method managed by macrophages can be used for intracellular infections of liver and spleen.

Patient-specific therapies and diagnosis have a critical role on nano-systems performing controlled distributions to reach the target. It is possible to find many nano-carrying systems having such an aim in the literature (liposomes, micellular and micro-emulsion systems, liquid crystal based formulations, nano-crystals, antibodies and conjugates, naturally occurring proteins as delivery systems, polymer conjugates and bio-conjugates, biodegradable nanoparticles/nano-capsules, virus-like particles for gene delivery, delivery of small nucleic acids or mimetics, delivery of vaccines, synthetic biomimetics, dendimers, carbon nano-tubes, etc.).

Although there have been many successful experimental studies on the topic existing today, strategies for developing new drug carrying systems aren't completely accepted yet. Efforts on this topic have been proceeding slowly because of the uncertainties about regulation and toxic side effects. It should be accepted that drug safety has to be attached as much importance as drug efficiency considering all nano-particles.

Chapter 6 – CHARACTERISTICS OF THE UNITED STATES MILITARY DEPLOYABLE CBRNE LABORATORY

Richard Trombly

20th Support Command FORSCOM 5183 Blackhawk Rd, E-1042 Aberdeen Proving Ground, Maryland 21010 UNITED STATES (410) 436-0088

richard.trombly@us.army.mil

6.1 INTRODUCTION

The United States Military Deployable CBRNE Laboratory interfaces with numerous units to provide Field Confirmatory and Theater Validation results. A graphic representation of the various levels of analysis is displayed below. In a field environment, rapidly deployable units are tailored to the incident and involve specialized teams with a tactical focus. These teams provide presumptive and field confirmatory results for consequence management. Mobile "Theater Validation" labs provide theater/operational level support by scientific experts to major combatant Commanders. Fixed site laboratories located in continental United States provide definitive analyses for national command authorities for strategic level decision-making. This chapter will focus on mobile laboratories providing Field Confirmatory and Theater Validation results.

Figure 6-1: Overview of CBRN Identification Levels.

U.S. Army Forces Command tasks the 20th Support Command to provide specialized CBRNE solutions for DoD challenges. The CBRNE Analytical and Remediation Activity (CARA), subordinate to the 20th Support Command, deploys and conducts operations in support of regional combatant Commanders or other government agencies in order to counter CBRNE and WMD threats in support of National Combating WMD objectives.

The CARA typically deploys elements in a general support role to a theater Commander under the mission command of the JTF-HQ or mission dependent direct support allocation to designated Commanders on an

area/site specific basis. Each of these elements can also deploy separately from the JTF. In this case, these elements will most often be placed in the operational control of the supported command.

The MEL mainly operates in a permissive environment but under certain conditions can operated in uncertain environments while conducting field confirmatory identification. The MEL cannot sustain 24-hour operations unless augmented by additional technical laboratory personnel. RRTs are capable of conducting non-intrusive assessment of munitions; presumptive identification of CB materials and may collect CBRN samples if required. All of CARA deploy in mobile, modular, tailorable teams depending on the mission requirement.

6.2 **REMEDIATION RESPONSE**

CARA has four Remediation Response Teams, located at Pine Bluff Arsenal, Arkansas and Aberdeen Proving Ground, Maryland. They provide:

- Response, remediation and escort support to combatant Commanders and other Government Agencies to counter the CBRNE and WMD Threat;
- Emergency response to discoveries of suspect Recovered Chemical Warfare Materials (RCWM) in support of the Army Chemical Materials Agency's, Non-Stockpile Chemical Materiel Project;
- Remediation operations involving chemical warfare materials found at formerly used defence sites and base realignment and closure sites in support of the Army's Corps of Engineers and active military installations in support of installation Commanders;
- Stockpile and non-stockpile operations in support of the Army Chemical Materials Agency; and
- Conduct technical escorts to transport chemical and biological surety and non-surety material for various Army laboratories.

The Mobile Munitions Assessment System (MMAS) Team conducts emergency response assessments of recovered chemical warfare materiel. The MMAS serves as a command center. It has an equipment storage area and weather monitoring system. It utilizes satellite communications to transmit data back to headquarters for analysis and can remain on site for months, with a constant power supply and redundant computer systems providing added data protection.

The MMAS Operators are trained and proficient with the MMAS equipment set:

- A Portable Isotopic Neutron Spectroscopy (PINS) system: PINS accurately detects the presence of chemical elements using neutron particles to produce a unique energy spectrum given off by chemicals inside a munition;
- A Digital Radiography and Computed Tomography (DRCT): DRCT uses X-ray photography to produce high-quality images of an item's interior to show if the munition contains a liquid fill and explosive potential; and
- A Raman Spectrometer: Using a fiber optic probe and laser, the Raman identifies the contents of glass Chemical Agent Identification Sets (CAIS) bottles containing various agents and industrial chemicals once used to train Soldiers.

Figure 6-2: Pictures of the Mobile Munitions Assessment System (from Top Left to Bottom Right): RAMANS Spectrophometer; MMAS Phase 2 System 2; Portable Isotopic Neutron Spectroscopy System; Digital Radiography / Computed Tomography.

6.3 MOBILE EXPEDITIONARY LABS

The Mobile Expeditionary Laboratory is staffed with credentialed, deployable civilian scientists, both chemists, and microbiologists. It can deploy using several different packages three tactical platforms, Light Mobile Expeditionary Lab (LMEL), Heavy Mobile Expeditionary Laboratory (HMEL) and Chemical Air Monitoring Suites (CAMS). This laboratory can detect, identify, quantify and provide field confirmatory/theater validated analysis of Chemical Warfare Agents (CWA), Toxic Industrial Compounds (TIC), biological agents and select explosives; and conduct near real time air monitoring of chemical warfare agents. It supports Sensitive site exploitation, crisis and consequence management, and mitigation operations. The tactical platforms are deployable by military aircraft and ruggedized for field deployment. The modular configurations can be tailored to support needs of combatant Commanders.

6.3.1 Light Mobile Expeditionary Labs

Figure 6-3: The Light Laboratory Capability.

The light configurations are two rugged, rapidly deployable suites of modular and tailored laboratory instruments for rapid operations at the request of a ground force Commander. The platforms use a standard military Light Medium Tactical Vehicles or LMTVs and a High Mobility Multipurpose Wheeled Vehicle, better known as a HMMWV. A vestibule connects the two vehicles. The actual "lab" is inside the shelter on the back of the LMTV. The package includes one Light Medium Tactical Vehicle (LMTV) with mounted lab shelter, an environmental control unit, trailer mounted 30-kW generator, and a shelter-installed glove box; one High Mobility Multi-purpose Wheeled Vehicle (HMMWV) with tactical shelter. This package is air transportable by a C-130 or larger aircraft.

Light Lab Chemistry

Light Lab Biological

Figure 6-4: Inside of the Flyaway Laboratory with a Chemistry and Biology Configuration.

The inside of the light laboratory has two configurations, chemistry and biology. The analytical components include a chemical package consisting of a:

- 1) Gas Chromatograph Mass Spectrometer (GC/MS) to separate and identify chemical and some explosive agents in air, vegetation, solid and liquid samples;
- 2) Fourier-Transform Infrared (FT-IR) Spectroscopy for bulk screening of chemicals and explosives (liquid, solid, thin film);
- 3) Raman spectrometer for bulk screening of chemicals and explosives (liquid, solid); and
- 4) Radiological screening capability.

The biological package consists of a:

- 1) Joint Biological Agent Identification and Diagnostic System (JBAIDS) [Polymerase Chain Reaction (PCR)] for identifying specific DNA/RNA of biological weapon agents;
- 2) Microscope used with specific stains to determine the presence and characteristics of microorganisms; and
- 3) Radiological screening capability.

The light laboratory can be configured in a combined package consisting of a GC/MS, FT-IR, PCR, and Antibody Assay, and a radiological screening capability.

6.3.2 Heavy Mobile Expeditionary Labs

The heavy MEL configurations are two 20-foot expandable shelter/containers that are deployed into a theater sanctuary area. The heavy MEL configuration brings a full brick and mortar lab-like facility with theatre-level confirmatory standard capabilities. A robust suite of analytical instrumentation allows for a high confidence identification of unknown hazards. The heavy MEL is deployed via C-17 and deploys with a family of medium tactical vehicles for ground transport with a 60-day supply of consumables. Each platform brings ten large containers and two refrigerators for shipment and storage.

Figure 6-5: The Heavy Laboratory Capability.

Figure 6-6: The Heavy Laboratory Engineering Controls Include Fume Hood, Class II Biosafety Cabinet and Glovebox.

CHARACTERISTICS OF THE UNITED STATES MILITARY DEPLOYABLE CBRNE LABORATORY

Figure 6-7: The Heavy Laboratory Images Inside the Sample Receipt Tent and 20' ISO Shelter.

The HMEL deploys with a robust suite of analytical equipment to analyze CWA's, precursors, degradation products, TICs, explosives, toxins, viruses and bacteria. The chemist use the following analytical instruments:

- 1) Gas Chromatograph Mass Spectrometer (GC/MS) to separate and identify chemical and some explosive agents in air, vegetation, solid and liquid samples;
- 2) Fourier-Transform Infrared (FT-IR) spectroscopy for bulk screening of chemicals and explosives (liquid, solid, thin film);
- 3) Raman spectrometer for bulk screening of chemicals and explosives (liquid, solid);
- 4) Capillary electrophoresis to separate and detect chemical degradation products;
- 5) Liquid Chromatography Mass Spectrometer (LC/MS) for the detection of trace level explosive compounds and proteomics analysis;
- 6) X-Ray Diffraction (XRD) identifies explosive, TICs compounds with crystal structures; and
- 7) X-Ray Fluorescence (XRF) for post blast analysis and identification of metal alloys and elemental analysis.

The microbiologist use the same equipment listed in the LMEL but the HMEL also include limited culture capability.

6.4 CHEMICAL AIR MONITORING SUITES

The chemical air monitoring suites configurations are four light medium tactical vehicles with shelter and towed generator sets. The chemical air monitoring suites provide the ground force Commander with the data on occupational exposure limitations as defined by Occupational Safety and Health Administration, CDC, U.S. Army Center for Health Promotion and Preventive Medicine, and the U.S. Surgeon General during CBRN material recovery or long-term site remediation. The chemical air monitoring MEL is deployed via C-130 and carries a 90-day supply of consumables.

The CAMS equipment is transported by a 2.5-ton M1079A1 shelter-equipped Light Medium Tactical Vehicle (LMTV) towing a 30-kW trailer-mounted generator set. The term CAMS refers to the entire system, which consists of the LMTV van and on-board chemical air monitoring equipment.

The CAMS equipment consists of MINICAMS (Gas Chromatography (GC) with a Flame Photometric Detector (FPD) and GC with Halogen Specific Detector (XSD), which employs analytical and surveillance methods to continuously evaluate for the presence of low-level Chemical Warfare Agents (CWAs) in order to comply with established Short-Term Exposure Limits (STEL). Depot Air Monitoring System (DAAMS) for GC/MS monitoring of air/gas/vapor samples captured on the DAAMS tube.

Figure 6-8: Light Medium Tactical Vehicle with Shelter and Towed Generator. Left: Deployed air monitoring arrangement with generator; Right: Mobile configuration with stored analytical equipment removed.

Figure 6-9: Internal Laboratory and Storage Configuration of Light Medium Tactical Vehicle.

The MEL brings the following capabilities to the supported Commander:

- Receipt and storage of solid, liquid, and vapor/gas samples;
- Field confirmatory or theater validation identification;
- Identification of the constituents of the solid, liquid, and vapor/gas sample;
- Characterization of the sample;
- Quantification of the sample;
- Security and positive control of samples and sample related data;
- Split samples for additional analysis as needed;
- Sensitive analytical data and results transmission; and
- Safe (and according to applicable laws, regulations, and customs) storage, transportation, and/or treatment and destruction (as needed) of any hazardous materials resulting from the laboratory operations.

Chapter 7 – NATO JOINT CBRN DEFENCE BATTALION

Dr. Frederick Johnson

Chief, Biology Branch CWMD Analysis Division United States Army Nuclear and CWMD Agency, G-357 Fort Belvoir, VA 22060 UNITED STATES 703-806-7878 Dr. Brian J. Lukey Chem/Bio Research Coordinator, HJF 711 Human Performance Wing/RHDJ Wright Patterson Air Force Base OH 45433 UNITED STATES 937-904-9543

frederick.johnson8.civ@mail.mil

brian.lukey.ctr@wpafb.af.mil

7.1 NATO REQUIREMENT/OBJECTIVE FOR A CBRNE DEPLOYABLE LABORATORY

The ever-growing threat of unconventional warfare requires NATO countries to be best prepared for a rapid response to a potential CBRNE event. The threat has elevated recently with the unrest in the Middle East, where terrorists and even host Nations may access CBRN stockpiles to use on their adversaries to gain the advantage. Past events that underscore the threat include the sarin attacks in the Tokyo subway, the anthrax letters in the US, and the sulfur mustard attacks on the Kurdish villages in Iraq. Most strategic analysts believe that the likelihood of such future CBRN events occurring no longer becomes a question of "if" but "when".

For CBRNE events, military Commanders need timely confirmatory analyses for crisis management to appropriately handle the immediate situation, with emphasis on appropriate decontamination, site evacuation and medical treatment for those exposed and also on avoiding exposure for anyone else. Senior political leaders require forensic confirmatory analysis for consequent management to take appropriate action on the identified perpetrator. All involved want to ensure the results are precise and accurate to make key strategic, operational, and tactical decisions in the most expeditious manner. Consequently, the need for a rapid-response CBRNE laboratory has never been more urgent.

The challenge for a NATO laboratory is complicated on several fronts. For consequence management decisions, most countries prefer obtaining advice from their own scientists/subject-matter experts. However, the skills to appropriately collect and analyze samples for a suspected CBRN incident require much training and time. As a result, forward-deployable military scientists and technicians with these required, highly-developed analytical skills are very limited in number. Maintaining a pool of military scientists for each NATO Nation with standardized, highly-technical skills would be most challenging. In addition, many countries have developed different requirements and approaches for the personnel, equipment, and missions for a deployable laboratory. The approaches are dependent upon a variety of factors to include the country's military size, political interest in the degree of retaliatory actions to be taken, and the appropriated budget to support such a laboratory. A single, standardize approach would be difficult to obtain with consensus. Consequently, the NATO deployable CBRNE laboratory has been designed to be flexible in its composition, reflecting each country's interpretation of their deployment need.

NATO's new Strategic Concept adopted at the 2010 Lisbon Summit confirmed the Alliance's commitment to further develop its capacity to defend against the threat of CBRN weapons of mass destruction and protect its populations, territory and forces. NATO developed the Combined Joint CBRN Defence Task Force (CJ-CBRND-TF) as one of NATO's key defences against CBRN events.

7.2 COMBINED JOINT CBRN DEFENCE TASK FORCE

The NATO CJ-CBRND-TF consists of CBRN Joint Assessment Team (JAT) and CBRN Defence Battalion. This NATO body is specifically trained and equipped to deal with CBRN events and/or attacks against NATO populations, territory, or forces.

The Battalion and the CBRN JAT, created in 2003 and declared operational the following year, is a multinational, multi-functional team, able to deploy quickly to participate in the full spectrum of NATO operations.

The Battalion's mission is unique in that it is not only trained for armed conflicts, but is also able to be deployed to crisis situations such as natural disasters and industrial accidents, including those involving hazardous material. The CJ-CBRND-TF can also be deployed in order to support the protection of High Visibility Events (HVE) such as Olympic Games or NATO Summits.

The realization of the CJ-CBRND-TF fulfils two of the capability commitments made by Allies at the 2002 Prague Summit: a Prototype Deployable Nuclear, Biological and Chemical (NBC) Analytical Laboratory and a Prototype NBC Event Response Team. These capabilities greatly enhance the Alliance's defence against WMD.

The Battalion's mission is to provide a rapidly-deployable and credible CBRN defence capability to maintain NATO's freedom of action and operational effectiveness in a CBRN threat environment.

The CBRN Battalion may be used to provide military assistance to civil authorities when authorized by the North Atlantic Council, the Alliance's principal political decision-making body. For example, they played a key planning role during the 2004 Summer Olympics in Greece, and the 2004 Istanbul Summit, where they supported any CBRN-related contingency operations.

The CBRN Defence Battalion is capable of conducting the following tasks:

- 1) CBRN reconnaissance and monitoring operations;
- 2) Sampling and Identification of Biological, Chemical, and Radiological agents (SIBCRA);
- 3) Biological detection and monitoring operations;
- 4) Provide CBRN assessments and advice to NATO Commanders; and
- 5) CBRN hazard management operations, such as decontamination.

7.3 NATO NATIONS PARTICIPATING IN THE DEFENCE TASK FORCE

Following the agreement at the 2002 Prague Summit to enhance the Alliance's defence capabilities against weapons of mass destruction, the North Atlantic Council, in June 2003, decided to form a Multi-national CBRN Defence Battalion and JAT.

The structure of the Battalion was established at a planning conference on 17-18 September 2003. The following month, on 28 October 2003, a force generation conference was held at Supreme Headquarters Allied Command Europe (SACEUR). On 18-21 November 2003, a follow-up conference was held in the Czech Republic, the first volunteer lead country. Twelve other nations (Belgium, Canada, Hungary, Italy, Norway, Poland, Portugal, Romania, Spain, Turkey, United Kingdom and United States) have offered to provide forces for this first Multi-national CBRN Defence Battalion.

The Battalion reached its initial operational capability on 1 December 2003. Full operational capability was achieved on 28 June 2004 as declared by SACEUR at the Istanbul Summit, and responsibility was transferred into the strategic command of Allied Command Operations. From then on, the Battalion was included in the six-month rotation system of the NATO Response Force.

Some 21 NATO Nations now contribute to the Combined Joint CBRN Defence Task Force on a voluntary basis. National commitments vary depending on the rotation, but there are usually 8 - 10 Nations involved per rotation.

For the very first time a non-NATO Member Nation participated in 2010. Ukraine contributed a decontamination platoon after having accomplished a NATO evaluation and certification process very successfully.

7.4 OPERATIONAL PROCESS

The CBRN JAT and CBRN Battalion fall under the strategic command of the SACEUR. Operational control is delegated to a subordinate command as required.

NATO's Allied Command Transformation provides evaluation standards, supports training and determines future NBC defence requirements and develops capabilities.

The Battalion level organization is composed of personnel from a number of NATO Nations. Like the NATO Response Force, dedicated personnel are based in their countries, coming together for training and deployment.

A voluntary lead country is identified for each rotation. The lead country hosts the CBRN Joint Assessment Team and Battalion headquarters, responsible for command and control arrangements, maintaining standard operational procedures, sustaining readiness levels and for planning and conducting training. Contributing countries supply functional capabilities. This includes providing requisite troops, equipment and logistical support in accordance with mission requirements. The Defence Task Force is composed of separate but complimentary components, which can be deployed in different stages and different combinations to suit each mission.

The components are:

- 1) Joint Assessment Team Comprised of specialists that provide CBRN-related advice and support;
- 2) Headquarters Command and Control Tailored command and control capabilities with a robust communications package to support assigned and attached organizations;
- 3) **Reconnaissance** Designed to provide route, area and point detection and identification of agents;
- 4) Decontamination Maintains the capability to decontaminate personnel and equipment; and
- 5) Deployable Analytical CBRN Laboratories.

Designed to provide expert sampling, analysis, and scientific advice to support operational Commanders.

The Battalion has a close relationship with the NATO Response Force. While it can be deployed independently, it is consistent and complementary to the NATO Response Force. Its strength is included within the NATO Rapid Force structure, and it can deploy within 5 to 30 days.

Annex A – HFM-177 MEETING ITINERARIES

A.1 6-8 APRIL 2009 MEETING IN EDGEWOOD, MARYLAND, USA

NATO RTG/HFM-177 Deployable Application of Biotechnology

6-8 April 2009 Conference Room 229, Building E3330 US Army Edgewood Chemical Biological Center Edgewood, MD 21010-5424 United States

<u>Center Host: Mr. Raymond Mastnjak, X5-2516</u> <u>Visit POC: Ms. Marlena Long, X5-0987</u>

ARRIVAL DATA:

Date: Mon 6 Apr 09 Time: 0800 Mode: POV Loc: Bldg E3330 <u>Mil Uniform: Duty Uniform</u> <u>Civilian: Business Attire</u>

DEPARTURE DATA:

Date: Wed, 8 Apr 09 Time: 1200 Mode: POV Loc: Bldg E3330

ITINERARY

Time	Event	Mode/Location	POC
Monday, 6	April		
0830	Arrive at ECBC	Bldg E3330 / Rm 229	Mr. Raymond Mastnjak
0900 - 0930	Introductions and Opening Comments (Mastnjak)	Bldg E3330 / Rm 229	Mr. Raymond Mastnjak
0930 – 1000	Overview Presentation of the HFM-177 (Schlager/Wade)	Bldg E3330 / Rm 229	Mr. Raymond Mastnjak
1000 – 1030	Overview of Czech Republic Lab Technology (Hubálek)	Bldg E3330 / Rm 229	Mr. Raymond Mastnjak
1030 – 1045	Break and Informal Discussion	Bldg E3330 / Rm 229	Mr. Raymond Mastnjak
1045 – 1115	Overview of the Turkey Lab Technology (Budak)	Bldg E3330 / Rm 229	Mr. Raymond Mastnjak
1115 – 1145	General Overview of Georgia Lab Technology (Tabagari)	Bldg E3330 / Rm 229	Mr. Raymond Mastnjak
1145 – 1300	Lunch Break	Bldg E3330 / Rm 229	Mr. Raymond Mastnjak
1300 – 1330	Overview of US Lab Technology (Mastnjak/Schlager)	Bldg E3330 / Rm 229	Mr. Raymond Mastnjak
1330 – 1430	Tour, STORM High Throughput Mobile Bioanalytical Lab	Bldg E3330	Mr. Raymond Mastnjak
1430 – 1445	Break	Bldg E3330 / Rm 229	Mr. Raymond Mastnjak
1445 – 1600	Open Discussion, Deployable Bioanalytical Laboratories	Bldg E3330 / Rm 229	Mr. Raymond Mastnjak
1700 – 1800	Drinks / Happy Hour / Ongoing Discussion (Optional)		Mr. Raymond Mastnjak
1800 – 2000	Dinner Outing (All)		Mr. Raymond Mastnjak
Tuesday, 7	′ April		
0900 - 0930	Coffee and Open Discussion (All)	Bldg E3330 / Rm 229	Mr. Raymond Mastnjak
0930 – 1000	Triage of Uncharacterized Samples (Unknowns) (Mastnjak)	Bldg E3330 / Rm 229	Mr. Raymond Mastnjak

0930 - 1000Triage of Uncharacterized Samples (Unknowns) (Mastnjak)Bldg E3330 / Rm 2291000 - 1030Field Operations in a Mobile Bioanalytical LaboratoryBldg E3330 / Rm 229

Dr. Carrie Poore

ANNEX A – HFM-177 MEETING ITINERARIES

1030 – 1045	Break and Informal Discussion	Bldg E3330 / Rm 229	Mr. Raymond Mastnjak
1045 – 1145	Tour, Mobile Bioanalytical Lab at Bldg E5830 (All)	Bldg E5830	Mr. Raymond Mastnjak
1145 – 1300	Lunch	Bldg E3330 / Rm 229	Mr. Raymond Mastnjak
1300 – 1430	Tour, US Army / FBI Sample Receipt Facility (Mastnjak)	Bldg E3330 / Rm 229	Mr. Raymond Mastnjak
1430 – 1445	Break		Mr. Raymond Mastnjak
1445 – 1600	Open Discussion (All)	Bldg E3330 / Rm 229	Mr. Raymond Mastnjak
	* Presentation of new and existing bio- and nano-technolog	jies	
	* Discussion and consideration deployable mobility aspects	s, structures and technologie	s for lab systems
	* New concepts and consensus for mobile platforms labs		
1700 – 1800	Drinks / Happy Hour (Optional)		Mr. Raymond Mastnjak
1800 – 2000	Dinner Outing		Mr. Raymond Mastnjak
Wednesday	, 8 April (Morning only)		
0900 - 0930	Coffee and Open Discussion (All)	Bldg E3330 / Rm 2299	Mr. Raymond Mastnjak
0930 – 1045	Wrap-up and discussion of preparation meeting minutes and results for NATO HFM submission (All)	Bldg E3330 / Rm 229	
1045 – 1100	Break	Bldg E3330 / Rm 229	Mr. Raymond Mastnjak

1045 - 1100	Diedk	Blug E3330 / RITI 229	Mr. Raymonu Mastrijak
1100 – 1130	Concluding Comments / Open Discussion (All)	Bldg E3330 / Rm 229	Mr. Raymond Mastnjak

A.2 29-30 OCTOBER 2011 MEETING IN MUNICH, GERMANY

NATO RTG/HFM-177 Deployable Application of Biotechnology

29-30 October 2011 Theresia Conference Room Holiday Inn Munich – Schwabing Munich, Germany

Saturday, 29 October

0900 - 0930	Introductions and Overview Presentation of the HFM-177 (Schlager/Lukey) – <i>With coffee & bagels</i>
0930 - 1000	Deployable Biological Laboratory of the Armed Forces of the Czech Republic (Hubálek/Pisa/Dresler)
1000 - 1015	US Army Bio-Environmental and Public Health Mobile Analytical Laboratory Capabilities (Walker)
1015 - 1030	Construction of Deployable Laboratories During Times of Reduced Funding (Mastnjak)
1030 - 1045	Break and Informal Discussion
1045 - 1100	The Role of Triage in Sample Analysis (Mastnjak)
1100 - 1130	The Bundeswehr Rapidly Deployable Bio Lab – Microbiological High-Tech Diagnostics for Outbreak Investigations Abroad (Woelfel)
1130 - 1300	Lunch Break (at the hotel)
1300 - 1330	Defence Nano-Biotechnology Applications in Turkey (Budak)
1330 - 1400	General Overview of Israel Lab Technology (Marks)
1400 - 1415	Break and Informal Discussion
1415 - 1445	General Overview of Georgia Lab Technology (Tabagari) (Optional)
1445 - 1500	Introduction to the "Biological Surveillance Collector System (BSCS)" (Howells)
1500 - 1530	NATO's Rapidly Deployable Outbreak Investigation Team (RDOIT) – From Concept to Development, from Implementation to Deployment (Wojtyk/Thibault/Chickery)
1530 - 1630	Discussion of Presentations and Initial Ideas on NATO Lab Design Elements:
	• Development of the deployable laboratory design, construction, and materials
	Analysis of existing instrument technology and procedures
	Analysis of emerging nano-/bio-technology for instrument acquisition
	• Integration of existing and emerging technologies into a deployable laboratory product
1830 - 1915	Drinks / Happy Hour at the hotel (Optional)

1930 – Ends Dinner at "Wirtshaus zur Brezn" (All) Leopoldstr.72, D-80802 München http://www.zurbrezn.de/ +49 89 390092

Sunday, 30 October

0900 - 0930	Coffee and Continue Open Discussion (All)
0930 - 1000	Complete Open Discussion: Development of the Deployable Laboratory Design, Construction, and Materials (All)
1000 - 1030	Complete Open Discussion: Analysis of Existing Instrument Technology and Procedures (All)
1030 - 1045	Break and Informal Discussion
1045 - 1115	Complete Open Discussion: Analysis of Emerging Nano-/Biotechnology for Instrument Acquisition (All)
1115 – 1145	Complete Open Discussion: Integration of Existing and Emerging Technologies into a Deployable Laboratory Product (All)
1145 - 1300	Lunch (at the hotel)
1300 - 1430	Discussion / Concluding Comments (All)
1800 - 1900	Drinks / Happy Hour at the hotel (Optional)
1930 – Ends	Dinner at "The Big Easy" Frundsbergstr. 46, D-80634 München http://www.thebigeasy.de/ +49 89 15890253

Country:

Annex B – NATO HFM-177 DEPLOYABLE LAB SURVEY

B.1 TEMPLATE

Institution:

Point	of Contact	t: Telephone:	Email:			
1.	Does your M	linistry Of Defence (MOD) possess permanent field-	forward or	Yes	No	Don't
	defence?	byable medical laboratory facilities for biological or o	chemical			
	→ If ye an a plea	es, please provide descriptive information and/or doc ttachment. If your country has more than one deploy se complete this Survey for each system.	umentation using yable system,			
2.	If your MOD facilities:	does NOT possess medical biological and/or chemi	cal defence			
	Does your M	OD coordinate with any other responsible/responsiv	e government	Yes	No	Don't Know
	outbreaks in	field containment?	ctious disease			
	\rightarrow If s	o, please briefly describe the arrangement:				
3.	Who is respo forward or m	onsible for the technical and operational management nobile/deployable medical laboratory facilities?	t of these field-			
		Medical Service				
		CBRN Defence				
		Others?				
4.	The laborator	ry is:				
		Self-mobile				

- \rightarrow Platform/type of vehicle:
- Deployable
 - \rightarrow Typical size and weight of single package: \rightarrow Total number of packages:
- Others?

Institution:

Country:

5.	The laboratory can be transported:			
	By car			
	By truck			
	In a civilian airplane as passenger luggage			
	In a civilian airplane as cargo only			
	In a military airplane			
	Others?			
6.	How long does it take to set up the lab after arrival at the site of operation?			
7.	What kind of external supplies (water, electricity, etc.) are needed to operate the laboratory?			
8.	Is the laboratory able to work autonomously without external supplies? → If your answer is yes, how long is the laboratory operational before external supplies are needed?	Yes	No	Don't Know
		Yes	No	Don't Know
9.	Does your laboratory participate in any scheme for ensuring permanent diagnostic capacity, such as an on call or a duty team regimen?			
	\rightarrow If your answer is yes, is this restricted to specific diagnostic tests, or specific diseases?			
	\rightarrow If yes, which are they?			
10.	Is this call system also designed to serve laboratory or hospital emergencies?	Yes	No	Don't Know
11.	Is it intended to respond to specific demands from a surveillance system?	Yes	No	Don't Know
12.	Is there a filter, at any level (national or regional), that will receive the demand	Yes	No	Don't Know
	and call the system only after assessment, deciding whether or not this is needed?			

Point of Contact:

Cou	ntry:	Institution:	Point of Contact:			
13.	What is th	e timing of the duty?				
		24 hours a day, 7 days a week?				
		Non-working hours of the day an	d non-working days of the week?			
		Any other schedule?				D
14.	Is the duty	v system part of a network?		Yes	No	Don't Know
		National?				
		Regional?				
		International?				
		Other?				D ''
				Yes	No	Know
15.	If your ans	swer to #14 was yes, does the duty of	call system include a whole team?			
	\rightarrow]	How many people are involved?				
	\rightarrow	Scientists (Experience/Degree type)	?			
	\rightarrow	Technologists (Experience/ Degree	type)?			
	\rightarrow (Others?				
				Yes	No	Don't
16.	Are there deployable any comm	other relevant capabilities or feature e medical laboratory facility which ents?	es of your field-forward or mobile/ you want to mention or do you have			Know

 \rightarrow If yes, please provide this information or comments using an attachment or use the space below:

Country:

Institution:

Point of Contact:

17. Which of the following agents can be detected in the laboratory and by which technology or method?

	Don't	Not	Molecular	Serological	Microscopy	C K	Other
	Know	Available	(PCR) Assay	Assay	(e.g. staining)		Methods
Anatoxins							
B. pseudomaliel							
Bacilius anthracis							
Botulinum Toxine							
Brucella spp.							
Burkholderia mallei							
Chikungunya virus							
Clostridium perfringens toxin							
Coxiella burnetii							
Eastern-Equine-Encephalitis							
Fhola virus							
Escherichia coli							
Flavivirusos							
Francisella tularensis							
Hantaviruses							
Influenza virus							
Iunin virus							
Lassa virus							
Machuno virus							
Machupo virus							
Monkeynov virus							
Omsk virus							
Orientia tsutsugamushi							
Palytoxin							
Ricin							
Rickettsia rickettsii							
Rickettsia typhi							
Rift Valley fever virus							
Salmonella spp.							
Salmonella Typhi							
Saxitoxins							
Shigella dysenteriae							
Staphylococcal enterotoxins							
Tetradotoxin							
Tick-borne encephalitis (TBE)							
virus							
Trichothecene							
Variola virus							
Venezuelan-Equine-							
Encephalitis virus							
Vibrio cholerae	<u>⊢ </u>		└──└└──		└──└└──		
Western-Equine-Encephalitis							
Virus Vollow fovor virus							
Versinia postis			├				
Othor (ploase list)			├				
other (please list)							

Cou	ntry:	Institution:	Point of Contact:			
18.	Is the laboratory ab \rightarrow If yes, wh	le to detect or identify Ch ich methods or technolog	emical Warfare Agents (CWAs)? ies are used?	Yes	No	Don't Know
	\rightarrow Please id detected of	entify which agents (Som or identified:	an, Sarin, Tabun, VX, etc.) can be			
				Yes	No	Don't Know
19.	Does the laboratory detection systems a	have nuclear/radiologicand assays?	l general or isotope specific survey			
	\rightarrow If yes, wh	ich methods or technolog	ies are used?			

 \rightarrow Please identify which isotopes can be detected or identified.

Annex C – HFM-177 MEETING PRESENTATIONS

C.1 HFM-177 MEETING: 6-8 APRIL 2009, EDGEWOOD, MARYLAND, USA

C.1.1 Georgia Presentation – by Sergo Tabagari

Sochi	Karachayevsk	 Pyatigorsk Kislovodsk 	BMozdok CI	ECHNVA
Gagra Gudaora	Sokhumi	Naľchik _o Ter	SIA Beslan Vagira Vladikávko	Groznyy
Octor Black Se	amch'ire [®] o ^Q all ^Q Zugdid Senaki _m Samtredia	4695 m us (15,404 ft) Gora Kazber (11 Tqibuli Chiatura Khut'aisi Khut	ALANIA Soos m 5526 tt) CAUCAS	Khunzakh _o Gun
Ardeşen Frabzon Of Rize	Kobulet'a Ozur Bat'umi Artvin Ardanuç ^o	geti GEORGIA Akhaltsikhe Savçat Ardahah	ARMENIA	Telavi avi CAUCAS o ^{Tovuz} o ^{Şamkır}
3		Gosle Kars		AZERBAIJ

CURRENT SITUATION

- The events that took place all over the world during last several years, have proved that the international terrorism is the biggest problem of our time.
- Bioterrorism is one of the cruelest and damaging types of terrorism.

CURRENT SITUATION

- Georgia has been in a very difficult situation since the last independence declaration more than 15 years ago.
- Georgia is located in one of the most unstable regions of the world. This causes the influx of the large numbers of refugees

CURRENT SITUATION

- The borders are not protected with respect to EDP detection and isolation capabilities.
- The smuggling of goods and products is widespread
- The existing water reservoirs are not protected
- There are the Natural Nidus of the most dangerous infections: plague, tularemia, anthrax etc in Georgia

INFECTIOUS DISEASE DEPARTMENT LOCATIONS

1.Central Military Hospital*

2. Kutaisi Military Hospital*

3.Akhaltsikhe Military Hospital*

*No diagnostic kits available

PROPOSED EPIDEMIOLOGICAL MONITORING CENTER:

 Laboratory for pathogen isolation (microbiological, serological analysis)

 Epidemiological information system: electronic network with database, which will allow to communicate with remote sites and update the information regularly

Training of the staff

PROPOSED EPIDEMIOLOGICAL MONITORING CENTER (CONTINUED)

Staff of the Sentinel Stations:

- a) Epidemiologist
- b) Bacteiologist
- c) 2 Paramedics
- d) Disinfector
- e) Veterinarians
- f) Drivers

PROPOSED EPIDEMIOLOGICAL MONITORING CENTER (CONTINUED)

 Epidemiological Monitoring Center should be located in Tbilisi

3 Sentinel stations :

- -Eastern Georgia Sentinel station the information from 4 garrisons will go here-Tbilisi, Gori, Telavy and Vasiani
- -Western Georgia Sentinel station-the information from 3 garrisons will go here-Batumi, Poty, Kutaisi
- -South Georgia Sentinel station-Akhaltsikhe garrison, location-Akhaltsikhe

THE PURPOSE OF SENTINEL STATIONS

 Epidemiological surveillance of appropriate garrisons

 In cases of disease outbreak taking all necessary actions for stopping the epidemics

 Creation of the database and the analysis of received data

Planning Epidemiological Monitoring System

- The 3 Epidemiological Monitoring Centers should be located in:
 - Tbilisi (Eastern Georgia)
 - Kutaisi (Western Georgia)
 - Akhaltsikhe (South Georgia)
- The 3 Mobile Groups working in nidus of Infections and on sites of bioterroristic attacks

BIOLOGICAL THREAT AGENT DETECTION & RESPONSE (TADR) IN GEORGIA

- Defence Threat Reduction Agency (US)
- Walter Reed Army Institute of Research (US)
- Ministry of Labor Health and Social Welfare (GEO)
- Ministry of Defence (GEO)
- Ministry of Agriculture (GEO)

Georgia

Threat Agent Detection & Response (TADR) Workshop 16 - 18 March 2004

- Dr. Michael Balady (DTRA)
- Dr. Alicia Anderson, DVM, MPH, DACVPM Division of Preventive Medicine Walter Reed Army Institute of Research
- Roger Breeze, PhD
- Eric Casper, DTRA
- Timothy P. Endy MD, MPH Director, Communicable Diseases and Immunology WRAIR
- Dr. R. Ross Graham (Bechtel National Inc.)

INTEGRATED SYSTEM OF HUMAN DISEASE SURVEILLANCE AND RESPONSE IN GEORGIA

NCDC

- The National Center for Disease Control (NCDC) was founded on the basis of Georgian Station for Plague Control in 1996
- NCDC reports to the Georgian Ministry of Health
- Main office is located in Tbilisi. Branch office in Batumi and two seasonal sentinel stations (Ninotsminda and Aspindza)
- NCDC has 258 employees, 20 of them are working in the Batumi branch office
- Approximately 50% of the staff are specialists with university education, and 30 of them have scientific degrees (candidates and doctors of sciences)
- Pathogens in use Type 1-2 (Russian classification)

NCDC PARTICIPATED IN THE FOLLOWING PROJECTS:

- International Training and Research in Emerging Infectious Diseases " (1997 – 2002) – Fogarthy Center, NIH
- "Establishing Epidemiological Network on the Territory of Georgia" (1997) - "Open Society Georgia" Foundation
- "Improvement of Epidemiological Network in Georgia" (1998) - "Open Society Georgia" Foundation
- Reproductive Health Survey (1999-2000) UNFPA, UNICEF, USAID, UNHCR, AIHA, CDC
- Nutritional Status of Children Under Five Years of Age in Six Regions of Georgia (2000 – 2001) – USAID/Save the Children-US, Georgia Field Office
- Provision of Epidemiological Survey Services on Baku Tbilisi – Ceyhan Pipeline Route – 2003, British Petroleum

ESTABLISH AN INTEGRATED, SECURE AND SUSTAINABLE DISEASE SURVEILLANCE SYSTEM IN GEORGIA

- Support human, environmental, and veterinary disease monitoring
- Ensure close cooperation among all relevant ministries and institutes and other international organizations
- Promote potential for integration into a regional disease surveillance system
- Ensure biosecurity and biosafety of biological facilities.

PROJECT GOALS

- Laboratory
 - Secure and safeguarded central reference laboratories
 - Safe, secure, and efficient pathogen transportation systems and capabilities
 - Verifiable training in biosafety/biosecurity, diagnostics
- Epidemiology and Surveillance
 - Standardized and repeatable human and animal disease monitoring systems
 - Mobile epidemiological response teams and secure transportation of disease elements
 - Verifiable epidemiology training
- Communications and Information Technology
 - Design, develop, and deploy and sustain a robust and secure electronic communicable disease reporting system
 - Create and sustain secure communications and data storage systems
- Rules and Regulations
 - Apply national regulations as they relate to BWPPP

CTR BWPP PROGRAM ORGANIZATION

C.1.2 USA Presentation – by Raymond Mastnjak

C.2 HFM-177 MEETING: 6-8 OCTOBER 2011, MUNICH, GERMANY

C.2.1 The Czech Republic Mobile Lab Presentation – by Libor Pisa

Deployable Biological Laboratory

Hygienic section

- decontamination of the workers
- waste water flows to the collector and to the sterilizer in autoclave
- drying of protective suits
- controlled over pressure +50 Pa

-		
	Post	Number
1.	Commander	1
2.	Medical/biological experts (microbiologist, epidemiologist, veterinarian, doctor of natural sciences)	4
3.	Laboratory technician	3
4.	Engineer	4
Total		12

C.2.2 Germany Mobile Lab Presentation – by Roman Wölfel

C.2.3 United States Lab Construction Presentation – by Raymond Mastnjak

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

Nating Under Sends

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

C.2.4 United States Sample Triage Presentation – by Raymond Mastnjak

Sample Flow in a Deployable Laboratory

- Field screening: What is known about the sample before it comes to the deployable lab?
- Is a pass through needed? Is there a need for a sterilization station using vaporous hydrogen peroxide or 5% Sodium hypochlorite?
- Can the sample container fit the opening of the pass through or the Class III biological safety cabinet?
- Balance the safety benefits of a Class III biological safety cabinet against the difficulties of sample manipulation.
- Will a sample aliquot be transferred to a Class Il biological safety cabinet?
- Movement of samples to cell culture (incubator) or to analytical equipment (PCR, ECL, sample prep robotics).
- Limitations of a deployable laboratory.

TECHNOLOGY DRIVEN. WARFIGHTER FOCUSED.

C.2.5 Israel Nano-Technology – by Robert S. Marks

	1.0000							
55		*	1		DE.		3	S.
Name	ELISA	PRNT	IFA	Microphere	NASBA	RTF-PCR	VeetTeat	helphor
ice siting	+	++	++	++	+++	++++	-	+++
gooificity		+++.	++			+++	++	+++
Speed	+	100		+			+++	-
Staffing	+	3640		+			++++	
Safety	++			+++	****	+++	+++	
ortability					-		+++	-
Cost		+		÷	+		+++	+
Serological Tests					Virological Tests			
Now Dervis to catch Wes	laster way, t Na virus.	→ N	eed a tes a	tenabling Ind spe <u>ed</u>	both high safety <u>an</u>	sensitiv d port <u>ab</u> i	ity/speci ility	ficity

Herrmann, S. B. Leshem, S. Landes, B. Rager-Zisman and R.S. Marks (2004) Talanta 66: 6-14

Optical fiber immunosensor for the detection of IgG antibody to Rift Valley fever virus in humans

Sobarzo, A., J.T. Paweska, S. Herrmann, T. Amir, R.S. Marks and L. Lobel (2007) Journal of Virological Methods 146 (1-2) 327-334

On the left Titration curves for high-positive (—) and negative control serum (- –) generated by OFIS (•) and colorimetric ELISA (O). The result of the linear regression analysis of the middle part of the calibration curves for high positive control is shown upper right corner of the graph. On the right signal to noise ratio between ELISA and OFIS.

Surface modification of fiber core

Argon phase silanization of fused silica

Argon vaporization of thiol-silane

The Fiber Tip After Cleaning

Fiber Tip After Chemical modification

Fiber Tip After EMCS And Rift Valley Fever Antigen Binding

17549 RLU/log

хó

2383 RLU/log

Sensitivity

transducers as dual biosensor platforms D. Atlas, K. Abu-Rabeah b, S. Herrmann, J.Frenkel, D. Tavor, S.Coenler and R.S. Marks Bioseneors & Bioelectronics (2005) 24: 3683-87

Physico-Chemical studies of an ITO-coated fiberoptic biosensor Konry, T. and R.S. Marks (2005). Thin Solid Films. 492: 313-321

TT	O is highly transmissive	Element	Wt %		
11	O is nightly transmissive	SiO ₂	25.96		
TI	O has low resistivity	In ₂ O ₃	73.63		
IT	O is a tin oxide-doped indium	SnO ₂	0.41		
OX	ide	Total	100.00		
	Contra a la contra de la contra d	240			
	Thickness	260 nm			
	Resistance	4.7 x 10 ⁻² Ω·em			
	Lattice constant	10.12 Å			
	Average grain size <d></d>	11.5 nm			
	THE BEBERRY		85%		
	Optical transmittance	85%			

Optical immunosensor based on a poly(pyrrole-benzophenone) film for the detection of antibodies to viral antigen Konry, T., A. Novoa, Y. Shemer-Avni, N. Hanuka, S. Cosnier, A. Lepellec and R.S. Marks (2005). <u>Analytical</u> <u>Chemistry</u>. 77 (6) 1771-1779 1153 Link 0.26 µm

Screening of patients with HCV infection

Serological state of patients	Total tested	Anti-E2+ Western Blot	Anti-E2+ Immuno sensor	Western blot Detection percentage	Immun- sensor Detection percentage
Anti HCV+ RNA+	13	9	13	69	100
Anti HCV- RNA+	8	2	4	25	50
Anti HCV- RNA-	7	0	0	0	0

*Anti HCV: Anti Core, NS5 & NS3

Indium tin oxide-coated fiber optic immunosensor for the detection of antibodies to Ebola virus

Petrosova, A., T. Konry, S. Cosnier, I. Thrakt, J. Lutwama, E. Rwaguma, A. Chepurnov, E. M. Mühlberger, L. Lobel R.S. Marks. (2006) <u>Sensors & Actuators. B. Chemical</u>. B 122:578-586

Ebola virus immunosensor vs ELISA for the detection of antibodies from Sudan and Zaire subtype strains Calibration curve Elisa Fiber optic

1:500- 1:10,000	1:2,000 - 1:80,000
1:20,000	1:960,000
	1:500- 1:10,000 1:20,000

Use human immune response profile to find epitope candidates

From 21 human samples with positive recognition to the NP, 20 were observed in individual survivors whereas only one in a fatal case. All .VP40 positive recognition samples were linked to survival

	Re	esults		2001-9	2001-gulu surv.			
Implic Implic c Barth di Barth					24/42 Gulu 2001 samples were Positive for VP30 = 57%			
fill Back Back Back Back Back Back Back Back	Only 8 s	amples	weren	t t	21/42 Gulu 2001 samples were Positive for rGP = 50%			
second		same of the local data		AT ALLEN				
posit S	ive for a how anti	ibody no	ecognit	ionll	31/42 Gulu 2001 samples were Positive for NP = 73%			

Cloning NP fragments so as to locate immunogenic parts using Ebola survivor sera

Identification of elevated IgM anti-GIPC-1 specific auto-antibodies in ovarian and breast

cancer patients

	CL-ELISA	Immunosenso	r		
Total Samples	11	11			Immunosensor
	9	5		GE-ELIJA	mmunosensoi
+	1	4	Total Samples	22	22
	0	1		16	5
+++	1	1	+	2	2
Sensitivity	18% (2/11)	54%(6/11)	#	3	11
			++++	1	4
			Sensitivity	27% (6/22)	77% (17/22)

Lateral flow immunosensor

Purify the bioreceptor

Conjugation of gold nanoparticles

Combine with transducer technology

Viralcheck June 21-27,2008 - Dakar, Senegal

- Funding:
 - US Army Research Labs
 - US State Department
- Content
 - Tutorial
 - Hands-on workshop with blind viral samples
 - Mock outbreak
 - Symposium
- African Research Network: inauguration
- Book: Advanced diagnostics for the detection of viral pathogens

Bioassays

- Natural whole organisms

 Microbial cell cultures
- Natural sub-organisms
 - Mammalian cell cultures
 - Blood sample
- Engineered organisms
 - Microbial cell cultures
 - Mammalian cell cultures

STO-TR-HFM-177

Biotinylated microsphere attached to an avidinylated fiber-optic endface

Flow-through real-time bacterial biosensor for toxicants in drinking water

Eltzov, E. et al. (2009). "Flow-through real time bacterial biosensor for toxic compounds in water." Sensors and Actuators B-Chemical 142(1): 11-18.

FIBER OPTIC BIOSENSOR FOR AIR TOXICITY MONITORING

Eltzov, E. et al. (2010). "Creation fiber optic based biosensor for air toxicity monitoring." <u>Sensors and Actuators B-Chemical, proofs.</u>

shape and distanc) by the oscillation of their plasmon electronic cloud

Surface-enhanced fluorescence from metallic nano-sculptured thin films

Abdulhalim, I., A. Kambehevsky, C. Patzip, B. Rousehenbach, B. Fahrmann, E. Elteov, R. Marke, J. Xu, F. Zhang, and A. Lakhtakia(2009) Surface-onhanced flatometers from metal analytized thin films with application to bio sensing in water. Applied Physics Letters, 94 (6)

From 6. More memory STF. (b) up view of 6.1, (c) top view of memory 300 memory deposited on top of 51 materials, (c) top view of 6.1, (c) top view of 55 m Ag layer, deposited on top of 51 materials, (d) top view of Ca NTFs, (c) top view of 53 manufactions deposited on Au Jone, and (f) side view of Ca NTFs, (c) top view of 53 manufactions deposited on Au Jone, and (f) side view of Ca NTFs, (c) top view of 53 manufactions deposited on Au Jone, and (f) side view of Ca NTFs, (c) top view of 53 memory and (f) and the boards of the OPEr flaborance doctoriang (f) OMI.

Transducer	Analyte	Receptor	Immobilization Procedure
Platinum disk electrode	Glucose (in aqueous solution)	Glucose oxidase	Micro-encapsulation in latex films
Platinum disk electrode	Glucose (in aqueous solution)	Glucose oxidase biotin labeled	Biotinylated Alginate matrix
Glassy carbon rotating disk electrode	Catechol (in organic solvent)	Polyphenol oxidase biotin labeled	Poly-pyrol- biotin electro- polymerized film
0.9 mm HB drawing leads	Paraoxon	Molecular imprinted polymer	Imprinted template

S. Szuperits, R.S. Marks, A. Novoa, L. Puech, E. Perez, I. Rico-Lattes. Electrochemistry Communications 2 c_{20} 0.851.855

r, S.; S. Srmerits, R.S. Marks, A. Novos, L. Puech, E. Perez, I. Rico-Lattes. *Talanse* 55 (2001) 889-897. r, S., A. Novos, C. Mousty and R.S. marks (2002) Analytica Chimica Acta 453: 71-79 y, C., A. Leppelec, S. cosnier, A. Novos and R.S. Marks (2001) Electrochemistry Communications. 3: 72 aunications. 3: 727-732 ty, C. A. Lennelec, S. con

NS RNA Detection System

We replace the NP viral gene with a Luc gene

Clinical problem

- 1. Clinical diagnostics are usually incomplete
- 2. Identification of the etiological agent ordered
- 3. Therapies could be directed quasi blind
- 4. The patient's immune reaction to the infection may be crucial to therapy

There is no diagnostic test today providing physicians with a reflection of the status of the insulted innate system as well as its potential course

[•]Primed' neutrophils 'mirror' the clinical status of the patient and may provide diagnostics and prognosis

- The respiratory burst is complex due to a variety of mechanisms and localizations
- · Neutrophils report on the innate immune status
 - Huge numbers, so cannot miss them
 - Permanently 'broadcast' the status patient
 - First enlisted against infection
 - Neutrophil glow depends on their activation status
- The phenotypic luminescent imprints of neutrophils is modulated by:
 - the insult
 - the genetic make-up of the host
 - the environmental memory

Parameters driven from the CL sub-kinetics: functional states of PMNs

ANNEX C – HFM-177 MEETING PRESENTATIONS

Phagolum. 60/656,926 (2004); 20092-WO-05; 20346-WO-06

Each patient has 82 parameters!

Parameter	Definition	
PtimeSP	Peak time of primed sample	
Extra SP	Extra-cellular phagocytosis-related emission of primed sample	
CapS	Capacity of standard sample	
RelTimeInPh_SA	Time of intracellular phagocytosis of aged sample divided by time of intracellular phagocytosis of standard sample	
S-bkg	Background CL of standard sample	
nonPhago_SA	Non-phage-related CL of aged sample	
nonPhago S	Non-phago-related CL of standard sample	
RelCapInPh_SP	Intracellular phagocytosis capacity of primed sample divided by intracellular phagocytosis capacity of standard sample	
RelTimeEx_SA	Time of extra-cellular phagocytosis-related emission of aged sample divided by time of extra-cellular phagocytosis-related emission of standard sample	
RelIntranonPhago_SP	Intracellular non-phagocytosis capacity of primed sample divided by intracellular non-phagocytosis capacity of standard sample	
RelPhago_SA	Phagocytosis capacity of aged sample divided by total capacity of aged sample	
RelTimeInPh_SP	Time of intra-cellular phagocytosis-related emission of primed sample divided by time of intra-cellular phagocytosis-related emission of standard sample	
CapSP	Capacity of primed sample	
SP_vel	Velocity of primed sample	
RelPhago_S	Phagocytosis capacity of standard sample divided by total capacity of standa sample	

Application of J48 (C4.5) data-mining algorithm for induction of the decision tree classification model

<text><text><text>

CMOS Lab-on-a-chip Biosensor module

ITO pattern fabrication of glass platforms for electropolymerization of light sensitive polymer for its conjugation bioreceptors on a micro-array Konry, T, B. Hadad, Y. Shemer-Avni, S. Cosnier and R.S. Marks (2008) Talanta 75:564-71.

CCHF

Fiber optic immunosensor • Virus in ticks (immuno & geno) – Immunosensor for patients – Reverse genetics • Drug screening –

NRF CREATE - Singapore

Nanomaterials for Energy & Water Management

Marks, Magdassi & Ma Ben Gurion University of the Negev Hebrew University of Jerusalem Nanyang Technology University

Solid phase peptide synthesis resin as carrier and adjuvant for oral vaccination

No cleavage from resin needed• No purification of peptide needed• Resin can be given as a bead and/or • hydrogel formulation Resin belongs to GRAS•

Pan Stanford 'High Tech of Biotechnology'

Nanoantenna - Lamy de la Chapelle & Pucci Fiber optic immunosensors - Marks Amperometric immunosensors - Cosnier Protocols in Bioassays & Biosensors - Marks Luminescent microbial biosensors - Thouand Advanced techniques in viral detection- Marks, Lobel & Sall

C.2.6 Turkey Nano-Technology Presentation – by Gürer G. Budak

Nanobiotechnology Research in Turkey

<section-header><section-header><section-header><section-header><list-item><list-item><list-item><list-item><list-item><list-item>

C.2.7 BioMedAC Presentation – by François Thibault

	Some BioMedAC EP deliverables
	 Expert advice biological threat "dirty dozen" decontamination "how clean is clean" smallpox vaccine, deployable laboratory, Standardisation documents NATO handbook on the medical aspects of NBC defensive operations (AMedP-6) Concept of operations of medical support in CBRN environments (AMedP-7) Planning guide for the estimation of CBRN casualties (AMedP-8) Rapidly deployable outbreak investigation team (RDOIT) for suspected use of biological warfare agents (STANAG 2529)
8	

REPORT DOCUMENTATION PAGE						
1. Recipient's Reference		2. Originator's References	3. Further Reference	4. Security Classification of Document		
		STO-TR-HFM-177 AC/323(HFM-177)TP/552	ISBN 978-92-837-0208-5	PUBLIC RELEASE		
5. Originator	 nator Science and Technology Organization North Atlantic Treaty Organization BP 25, F-92201 Neuilly-sur-Seine Cedex, France 					
6. Title Deployable Laboratory Applications of Nano- and Bio-Technology						
7. Presented at/Sponsored by						
Findings of Task Group HFM-177.						
8. Author(s)/Ed		9. Date				
	October 2014					
10. Author's/Ec	11. Pages					
	Multipl	e		200		
12. Distribution Statement There are no restrictions on the distribution of this document. Information about the availability of this and other STO unclassified publications is given on the back cover.				document. STO r.		
13. Keywords/Descriptors						
	Agen	t .	Chemical			
	Analy	/tic gical	Deployable laboratory Radiological			
	CBRI	N	Warfare			

14. Abstract

The NATO STO Human Factors and Medicine panel chartered a Research Technical Group (HFM-177 RTG) to study "Deployable Laboratory Applications of Nano- and Bio-Technology", which focused on deployable NATO CBRN laboratory advance technologies. Over 20 expert representatives from the Czech Republic, France, the Republic of Georgia, Germany, Israel, Turkey, United Kingdom and United States participated. Each country discussed their CBRN deployable laboratory capabilities and challenges. The RTG recognized different approaches taken by each country in the development of their deployable laboratory for their country's mission. The review resulted in findings of potential novel options to customize the level of response required for NATO missions. A RTG sub-group developed a survey that aided documentation of state-of-the-art technical advances employed in current laboratories that may allow NATO to apply a customized response team depending upon the threat scenario. Many countries' found enhancement approaches from others' lessons-learned that were applicable to their deployment laboratory activities. The HFM-177 RTG meetings were great successes that allowed knowledge gathering resulting in a technical report addressing current capabilities and future directions. The RTG recommends that these findings be forwarded to the NATO Army Armaments Group, Joint Capability Group on CBRN Defence, and the Sampling and Identification of Biological, Chemical and Radiological Agents sub-group for their consideration of asset applications and for determining country agreement development for capability application in a NATO bio-response.

NORTH ATLANTIC TREATY ORGANIZATION

BP 25

F-92201 NEUILLY-SUR-SEINE CEDEX • FRANCE Télécopie 0(1)55.61.22.99 • E-mail mailbox@cso.nato.int

DIFFUSION DES PUBLICATIONS

STO NON CLASSIFIEES

Les publications de l'AGARD, de la RTO et de la STO peuvent parfois être obtenues auprès des centres nationaux de distribution indiqués ci-dessous. Si vous souhaitez recevoir toutes les publications de la STO, ou simplement celles qui concernent certains Panels, vous pouvez demander d'être inclus soit à titre personnel, soit au nom de votre organisation, sur la liste d'envoi.

Les publications de la STO, de la RTO et de l'AGARD sont également en vente auprès des agences de vente indiquées ci-dessous.

Les demandes de documents STO, RTO ou AGARD doivent comporter la dénomination « STO », « RTO » ou « AGARD » selon le cas, suivi du numéro de série. Des informations analogues, telles que le titre est la date de publication sont souhaitables.

Si vous souhaitez recevoir une notification électronique de la disponibilité des rapports de la STO au fur et à mesure de leur publication, vous pouvez consulter notre site Web (http://www.sto.nato.int/) et vous abonner à ce service.

ALLEMAGNE

Streitkräfteamt / Abteilung III Fachinformationszentrum der Bundeswehr (FIZBw) Gorch-Fock-Straße 7, D-53229 Bonn

BELGIQUE

Royal High Institute for Defence – KHID/IRSD/RHID Management of Scientific & Technological Research for Defence, National STO Coordinator Royal Military Academy – Campus Renaissance Renaissancelaan 30, 1000 Bruxelles

CANADA

DSIGRD2 – Bibliothécaire des ressources du savoir R et D pour la défense Canada Ministère de la Défense nationale 305, rue Rideau, 9e étage Ottawa, Ontario K1A 0K2

DANEMARK

Danish Acquisition and Logistics Organization (DALO) Lautrupbjerg 1-5 2750 Ballerup

ESPAGNE

SDG TECIN / DGAM C/ Arturo Soria 289 Madrid 28033

ESTONIE

Estonian Ministry of Defence Estonian National Coordinator for NATO STO Sakala 1 Tallinn 15094

ETATS-UNIS

Defense Technical Information Center 8725 John J. Kingman Road Fort Belvoir, VA 22060-6218

FRANCE

O.N.E.R.A. (ISP) 29, Avenue de la Division Leclerc - BP 72 92322 Châtillon Cedex

CENTRES DE DIFFUSION NATIONAUX

GRECE (Correspondant)

Defence Industry & Research General Directorate, Research Directorate Fakinos Base Camp, S.T.G. 1020 Holargos, Athens

HONGRIE

Hungarian Ministry of Defence Development and Logistics Agency P.O.B. 25, H-1885 Budapest

ITALIE

Centro Gestione Conoscenza Secretariat General of Defence National Armaments Directorate Via XX Settembre 123/A 00187 Roma

LUXEMBOURG

Voir Belgique

NORVEGE

Norwegian Defence Research Establishment, Attn: Biblioteket P.O. Box 25, NO-2007 Kjeller

PAYS-BAS

Royal Netherlands Military Academy Library P.O. Box 90.002 4800 PA Breda

POLOGNE

Centralna Biblioteka Wojskowa ul. Ostrobramska 109 04-041 Warszawa

PORTUGAL

Estado Maior da Força Aérea SDFA – Centro de Documentação Alfragide, P-2720 Amadora

REPUBLIQUE TCHEQUE

Vojenský technický ústav s.p. CZ Distribution Information Centre Mladoboleslavská 944 PO Box 18 197 06 Praha 9

ROUMANIE

Romanian National Distribution Centre Armaments Department 9-11, Drumul Taberei Street Sector 6 061353 Bucharest

ROYAUME-UNI

Dstl Knowledge and Information Services Building 247 Porton Down, Salisbury SP4 0JQ

SLOVAQUIE

Akadémia ozbrojených síl gen. M.R. Štefánika, Distribučné a informačné stredisko STO Demänová 393 031 06 Liptovský Mikuláš 6

SLOVENIE

Ministry of Defence Central Registry for EU & NATO Vojkova 55 1000 Ljubljana

TURQUIE

Milli Savunma Bakanlığı (MSB) ARGE ve Teknoloji Dairesi Başkanlığı 06650 Bakanlıklar – Ankara

AGENCES DE VENTE

The British Library Document Supply Centre Boston Spa, Wetherby West Yorkshire LS23 7BQ ROYAUME-UNI Canada Institute for Scientific and Technical Information (CISTI) National Research Council Acquisitions Montreal Road, Building M-55 Ottawa K1A 0S2 CANADA

Les demandes de documents STO, RTO ou AGARD doivent comporter la dénomination « STO », « RTO » ou « AGARD » selon le cas, suivie du numéro de série (par exemple AGARD-AG-315). Des informations analogues, telles que le titre et la date de publication sont souhaitables. Des références bibliographiques complètes ainsi que des résumés des publications STO, RTO et AGARD figurent dans le « NTIS Publications Database » (http://www.ntis.gov).

NORTH ATLANTIC TREATY ORGANIZATION

BP 25 F-92201 NEUILLY-SUR-SEINE CEDEX • FRANCE Télécopie 0(1)55.61.22.99 • E-mail mailbox@cso.nato.int

SCIENCE AND TECHNOLOGY ORGANIZATION

DISTRIBUTION OF UNCLASSIFIED STO PUBLICATIONS

STO PUBLICATIONS

AGARD, RTO & STO publications are sometimes available from the National Distribution Centres listed below. If you wish to receive all STO reports, or just those relating to one or more specific STO Panels, they may be willing to include you (or your Organisation) in their distribution. STO, RTO and AGARD reports may also be purchased from the Sales Agencies listed below.

Requests for STO, RTO or AGARD documents should include the word 'STO', 'RTO' or 'AGARD', as appropriate, followed by the serial number. Collateral information such as title and publication date is desirable.

If you wish to receive electronic notification of STO reports as they are published, please visit our website (http://www.sto.nato.int/) from where you can register for this service.

NATIONAL DISTRIBUTION CENTRES

BELGIUM

Royal High Institute for Defence – KHID/IRSD/RHID Management of Scientific & Technological Research for Defence, National STO Coordinator Royal Military Academy – Campus Renaissance Renaissancelaan 30 1000 Brussels

CANADA

DRDKIM2 – Knowledge Resources Librarian Defence R&D Canada Department of National Defence 305 Rideau Street, 9th Floor Ottawa, Ontario K1A 0K2

CZECH REPUBLIC

Vojenský technický ústav s.p. CZ Distribution Information Centre Mladoboleslavská 944 PO Box 18 197 06 Praha 9

DENMARK Danish Acquisition and Logistics Organization (DALO) Lautrupbjerg 1-5 2750 Ballerup

ESTONIA

Estonian Ministry of Defence Estonian National Coordinator for NATO STO Sakala 1, Tallinn 15094

FRANCE

O.N.E.R.A. (ISP) 29, Avenue de la Division Leclerc - BP 72 92322 Châtillon Cedex

GERMANY

Streitkräfteamt / Abteilung III Fachinformationszentrum der Bundeswehr (FIZBw) Gorch-Fock-Straße 7 D-53229 Bonn

GRECE (Point of Contact)

Defence Industry & Research General Directorate, Research Directorate Fakinos Base Camp, S.T.G. 1020 Holargos, Athens

HUNGARY

Hungarian Ministry of Defence Development and Logistics Agency P.O.B. 25, H-1885 Budapest

ITALY

Centro Gestione Conoscenza Secretariat General of Defence National Armaments Directorate Via XX Settembre 123/A, 00187 Roma

LUXEMBOURG See Belgium

NETHERLANDS Royal Netherlands Military Academy Library P.O. Box 90.002 4800 PA Breda

NORWAY

Norwegian Defence Research Establishment, Attn: Biblioteket P.O. Box 25, NO-2007 Kjeller

POLAND

Centralna Biblioteka Wojskowa ul. Ostrobramska 109 04-041 Warszawa

PORTUGAL

Estado Maior da Força Aérea SDFA – Centro de Documentação Alfragide, P-2720 Amadora

SALES AGENCIES

The British Library Document Supply Centre Boston Spa, Wetherby West Yorkshire LS23 7BQ UNITED KINGDOM Canada Institute for Scientific and Technical Information (CISTI) National Research Council Acquisitions Montreal Road, Building M-55 Ottawa K1A 0S2 CANADA

Requests for STO, RTO or AGARD documents should include the word 'STO', 'RTO' or 'AGARD', as appropriate, followed by the serial number (for example AGARD-AG-315). Collateral information such as title and publication date is desirable. Full bibliographical references and abstracts of STO, RTO and AGARD publications are given in "NTIS Publications Database" (http://www.ntis.gov).

ROMANIA

Romanian National Distribution Centre Armaments Department 9-11, Drumul Taberei Street Sector 6, 061353 Bucharest

SLOVAKIA

Akadémia ozbrojených síl gen M.R. Štefánika, Distribučné a informačné stredisko STO Demänová 393 031 06 Liptovský Mikuláš 6

SLOVENIA

Ministry of Defence Central Registry for EU & NATO Vojkova 55 1000 Ljubljana

SPAIN

SDG TECIN / DGAM C/ Arturo Soria 289 Madrid 28033

TURKEY

Milli Savunma Bakanlığı (MSB) ARGE ve Teknoloji Dairesi Başkanlığı 06650 Bakanlıklar – Ankara

UNITED KINGDOM

Dstl Knowledge and Information Services Building 247 Porton Down, Salisbury SP4 0JQ

UNITED STATES

Defense Technical Information Center 8725 John J. Kingman Road Fort Belvoir, VA 22060-6218

ISBN 978-92-837-0208-5